Подтвердить что ты не робот

Функции сравнения с плавающей запятой для С#

Может ли кто-то указать (или показать) некоторые хорошие общие функции сравнения с плавающей запятой в С# для сравнения значений с плавающей запятой? Я хочу реализовать функции для IsEqual, IsGreater a IsLess. Я также очень забочусь о том, что двойники не плавают.

4b9b3361

Ответ 1

Написание полезного общего назначения с плавающей запятой IsEqual очень, очень сложно, если не просто невозможно. Ваш текущий код потерпит неудачу при a==0. То, как метод должен вести себя в таких случаях, на самом деле является вопросом определения, и, возможно, код будет лучше всего приспособлен для конкретного случая использования домена.

Для такого рода вещей вам действительно нужен хороший набор тестов. Вот как я это сделал для " Руководства с плавающей точкой", вот что я придумал в конце (код Java должен быть достаточно простым для перевода):

public static boolean nearlyEqual(float a, float b, float epsilon) {
    final float absA = Math.abs(a);
    final float absB = Math.abs(b);
    final float diff = Math.abs(a - b);

    if (a == b) { // shortcut, handles infinities
        return true;
    } else if (a == 0 || b == 0 || absA + absB < Float.MIN_NORMAL) {
        // a or b is zero or both are extremely close to it
        // relative error is less meaningful here
        return diff < (epsilon * Float.MIN_NORMAL);
    } else { // use relative error
        return diff / (absA + absB) < epsilon;
    }
}

Вы также можете найти тестовый набор на сайте.

Приложение: тот же код в С# для парных символов (как задано в вопросах)

public static bool NearlyEqual(double a, double b, double epsilon)
{
    const double MinNormal = 2.2250738585072014E-308d;
    double absA = Math.Abs(a);
    double absB = Math.Abs(b);
    double diff = Math.Abs(a - b);

    if (a.Equals(b))
    { // shortcut, handles infinities
        return true;
    } 
    else if (a == 0 || b == 0 || absA + absB < MinNormal) 
    {
        // a or b is zero or both are extremely close to it
        // relative error is less meaningful here
        return diff < (epsilon * MinNormal);
    }
    else
    { // use relative error
        return diff / (absA + absB) < epsilon;
    }
}

Ответ 2

Из статья Брюса Доусона о сравнении поплавков, вы также можете сравнить float как целые числа. Близость определяется наименее значимыми битами.

public static bool AlmostEqual2sComplement( float a, float b, int maxDeltaBits ) 
{
    int aInt = BitConverter.ToInt32( BitConverter.GetBytes( a ), 0 );
    if ( aInt <  0 )
        aInt = Int32.MinValue - aInt;  // Int32.MinValue = 0x80000000

    int bInt = BitConverter.ToInt32( BitConverter.GetBytes( b ), 0 );
    if ( bInt < 0 )
        bInt = Int32.MinValue - bInt;

    int intDiff = Math.Abs( aInt - bInt );
    return intDiff <= ( 1 << maxDeltaBits );
}

EDIT: битконвертор относительно медленный. Если вы хотите использовать небезопасный код, то это очень быстрая версия:

    public static unsafe int FloatToInt32Bits( float f )
    {
        return *( (int*)&f );
    }

    public static bool AlmostEqual2sComplement( float a, float b, int maxDeltaBits )
    {
        int aInt = FloatToInt32Bits( a );
        if ( aInt < 0 )
            aInt = Int32.MinValue - aInt;

        int bInt = FloatToInt32Bits( b );
        if ( bInt < 0 )
            bInt = Int32.MinValue - bInt;

        int intDiff = Math.Abs( aInt - bInt );
        return intDiff <= ( 1 << maxDeltaBits );
    }

Ответ 3

В дополнение к Andrew Wang ответьте: если метод BitConverter слишком медленный, но вы не можете использовать небезопасный код в своем проекте, эта структура на ~ 6 раз быстрее, чем BitConverter:

[StructLayout(LayoutKind.Explicit)]
public struct FloatToIntSafeBitConverter
{
    public static int Convert(float value)
    {
        return new FloatToIntSafeBitConverter(value).IntValue;
    }

    public FloatToIntSafeBitConverter(float floatValue): this()
    {
        FloatValue = floatValue;
    }

    [FieldOffset(0)]
    public readonly int IntValue;

    [FieldOffset(0)]
    public readonly float FloatValue;
}

(Кстати, я пробовал использовать принятое решение, но он (как и мое преобразование) не смог выполнить некоторые из модульных тестов, упомянутых в ответе, например, assertTrue(nearlyEqual(Float.MIN_VALUE, -Float.MIN_VALUE));)

Ответ 4

Продолжая ответы, предоставленные Michael и тестирование, важно иметь в виду при переводе исходный код Java для С# заключается в том, что Java и С# определяют свои константы по-разному. С#, например, не хватает Java MIN_NORMAL, а определения для MinValue сильно различаются.

Java определяет MIN_VALUE как наименьшее возможное положительное значение, а С# определяет его как наименьшее возможное представимое значение в целом. Эквивалентным значением в С# является Epsilon.

Отсутствие MIN_NORMAL проблематично для прямого перевода исходного алгоритма - без него вещи начинают разрушаться для небольших значений вблизи нуля. Java MIN_NORMAL следует спецификации IEEE наименьшего возможного числа, не имея ведущего бита значения как нуля, и имея в виду это, мы можем определить наши собственные нормали для синглов и удвоений (которые dbc упоминает в комментариях к исходному ответу).

Следующий код С# для синглов передает все тесты, указанные в "Руководстве по плавающей точке", а двойное издание передает все тесты с незначительными изменениями в тестовых случаях, чтобы учесть повышенную точность.

public static bool ApproximatelyEqualEpsilon(float a, float b, float epsilon)
{
    const float floatNormal = (1 << 23) * float.Epsilon;
    float absA = Math.Abs(a);
    float absB = Math.Abs(b);
    float diff = Math.Abs(a - b);

    if (a == b)
    {
        // Shortcut, handles infinities
        return true;
    }

    if (a == 0.0f || b == 0.0f || diff < floatNormal)
    {    
        // a or b is zero, or both are extremely close to it.
        // relative error is less meaningful here
        return diff < (epsilon * floatNormal);
    }

    // use relative error
    return diff / Math.Min((absA + absB), float.MaxValue) < epsilon;
}

Версия для парных разрядов идентична, кроме изменений типа, и обычно это определяется как нормальная.

const double doubleNormal = (1L << 52) * double.Epsilon;

Ответ 5

Будьте осторожны с некоторыми ответами...

ОБНОВЛЕНИЕ 2019-0829, я также включил декомпилированный код Microsoft, который должен быть намного лучше, чем мой.

1 - Вы можете легко представить любое число с 15 значащими цифрами в памяти с двойным. Смотрите Википедию.

2 - Проблема возникает из расчета плавающих чисел, где вы можете потерять некоторую точность. Я имею в виду, что после вычисления число типа .1 может стать чем-то вроде .1000000000000001 ==>. Когда вы делаете некоторые вычисления, результаты могут быть усечены, чтобы быть представленными в двойном. Это усечение приносит ошибку, которую вы можете получить.

3 - Чтобы избежать проблемы при сравнении двойных значений, люди вводят погрешность, часто называемую epsilon. Если два плавающих числа имеют только контекстный эпсилон в качестве разницы, то они считаются равными. double.Epsilon - это наименьшее число между двойным значением и его ближайшим (следующим или предыдущим) значением.

4 - Разница между двумя двойными значениями может быть больше, чем double.epsilon. Разница между действительным двойным значением и вычисленным зависит от того, сколько вычислений вы сделали и какие. Многие народы считают, что оно всегда двойное. Эпсилон, но они действительно не правы. Чтобы получить отличный ответ, см. ответ ханса Пассанта. Эпсилон основан на вашем контексте, где он зависит от наибольшего числа, которое вы достигаете во время вычислений, и от количества вычислений, которые вы делаете (накапливается ошибка усечения).

5 - это код, который я использую. Будьте осторожны, я использую свой эпсилон только для нескольких расчетов. В противном случае я умножаю свой эпсилон на 10 или 100.

6 - Как отмечает SvenL, возможно, мой эпсилон недостаточно велик. Предлагаю прочитать комментарий SvenL. Кроме того, возможно, "десятичная" может сделать работу для вашего случая?

Декомпилированный код Microsoft:

// Decompiled with JetBrains decompiler
// Type: MS.Internal.DoubleUtil
// Assembly: WindowsBase, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35
// MVID: 33C590FB-77D1-4FFD-B11B-3D104CA038E5
// Assembly location: C:\Windows\Microsoft.NET\assembly\GAC_MSIL\WindowsBase\v4.0_4.0.0.0__31bf3856ad364e35\WindowsBase.dll

using MS.Internal.WindowsBase;
using System;
using System.Runtime.InteropServices;
using System.Windows;

namespace MS.Internal
{
  [FriendAccessAllowed]
  internal static class DoubleUtil
  {
    internal const double DBL_EPSILON = 2.22044604925031E-16;
    internal const float FLT_MIN = 1.175494E-38f;

    public static bool AreClose(double value1, double value2)
    {
      if (value1 == value2)
        return true;
      double num1 = (Math.Abs(value1) + Math.Abs(value2) + 10.0) * 2.22044604925031E-16;
      double num2 = value1 - value2;
      if (-num1 < num2)
        return num1 > num2;
      return false;
    }

    public static bool LessThan(double value1, double value2)
    {
      if (value1 < value2)
        return !DoubleUtil.AreClose(value1, value2);
      return false;
    }

    public static bool GreaterThan(double value1, double value2)
    {
      if (value1 > value2)
        return !DoubleUtil.AreClose(value1, value2);
      return false;
    }

    public static bool LessThanOrClose(double value1, double value2)
    {
      if (value1 >= value2)
        return DoubleUtil.AreClose(value1, value2);
      return true;
    }

    public static bool GreaterThanOrClose(double value1, double value2)
    {
      if (value1 <= value2)
        return DoubleUtil.AreClose(value1, value2);
      return true;
    }

    public static bool IsOne(double value)
    {
      return Math.Abs(value - 1.0) < 2.22044604925031E-15;
    }

    public static bool IsZero(double value)
    {
      return Math.Abs(value) < 2.22044604925031E-15;
    }

    public static bool AreClose(Point point1, Point point2)
    {
      if (DoubleUtil.AreClose(point1.X, point2.X))
        return DoubleUtil.AreClose(point1.Y, point2.Y);
      return false;
    }

    public static bool AreClose(Size size1, Size size2)
    {
      if (DoubleUtil.AreClose(size1.Width, size2.Width))
        return DoubleUtil.AreClose(size1.Height, size2.Height);
      return false;
    }

    public static bool AreClose(Vector vector1, Vector vector2)
    {
      if (DoubleUtil.AreClose(vector1.X, vector2.X))
        return DoubleUtil.AreClose(vector1.Y, vector2.Y);
      return false;
    }

    public static bool AreClose(Rect rect1, Rect rect2)
    {
      if (rect1.IsEmpty)
        return rect2.IsEmpty;
      if (!rect2.IsEmpty && DoubleUtil.AreClose(rect1.X, rect2.X) && (DoubleUtil.AreClose(rect1.Y, rect2.Y) && DoubleUtil.AreClose(rect1.Height, rect2.Height)))
        return DoubleUtil.AreClose(rect1.Width, rect2.Width);
      return false;
    }

    public static bool IsBetweenZeroAndOne(double val)
    {
      if (DoubleUtil.GreaterThanOrClose(val, 0.0))
        return DoubleUtil.LessThanOrClose(val, 1.0);
      return false;
    }

    public static int DoubleToInt(double val)
    {
      if (0.0 >= val)
        return (int) (val - 0.5);
      return (int) (val + 0.5);
    }

    public static bool RectHasNaN(Rect r)
    {
      return DoubleUtil.IsNaN(r.X) || DoubleUtil.IsNaN(r.Y) || (DoubleUtil.IsNaN(r.Height) || DoubleUtil.IsNaN(r.Width));
    }

    public static bool IsNaN(double value)
    {
      DoubleUtil.NanUnion nanUnion = new DoubleUtil.NanUnion();
      nanUnion.DoubleValue = value;
      ulong num1 = nanUnion.UintValue & 18442240474082181120UL;
      ulong num2 = nanUnion.UintValue & 4503599627370495UL;
      if (num1 == 9218868437227405312UL || num1 == 18442240474082181120UL)
        return num2 > 0UL;
      return false;
    }

    [StructLayout(LayoutKind.Explicit)]
    private struct NanUnion
    {
      [FieldOffset(0)]
      internal double DoubleValue;
      [FieldOffset(0)]
      internal ulong UintValue;
    }
  }
}

Мой код:

public static class DoubleExtension
    {
        // ******************************************************************
        // Base on Hans Passant Answer on:
        // /questions/105706/doubleepsilon-for-equality-greater-than-less-than-less-than-or-equal-to-greater-than-or-equal-to

        /// <summary>
        /// Compare two double taking in account the double precision potential error.
        /// Take care: truncation errors accumulate on calculation. More you do, more you should increase the epsilon.
        public static bool AboutEquals(this double value1, double value2)
        {
            double epsilon = Math.Max(Math.Abs(value1), Math.Abs(value2)) * 1E-15;
            return Math.Abs(value1 - value2) <= epsilon;
        }

        // ******************************************************************
        // Base on Hans Passant Answer on:
        // /questions/105706/doubleepsilon-for-equality-greater-than-less-than-less-than-or-equal-to-greater-than-or-equal-to

        /// <summary>
        /// Compare two double taking in account the double precision potential error.
        /// Take care: truncation errors accumulate on calculation. More you do, more you should increase the epsilon.
        /// You get really better performance when you can determine the contextual epsilon first.
        /// </summary>
        /// <param name="value1"></param>
        /// <param name="value2"></param>
        /// <param name="precalculatedContextualEpsilon"></param>
        /// <returns></returns>
        public static bool AboutEquals(this double value1, double value2, double precalculatedContextualEpsilon)
        {
            return Math.Abs(value1 - value2) <= precalculatedContextualEpsilon;
        }

        // ******************************************************************
        public static double GetContextualEpsilon(this double biggestPossibleContextualValue)
        {
            return biggestPossibleContextualValue * 1E-15;
        }

        // ******************************************************************
        /// <summary>
        /// Mathlab equivalent
        /// </summary>
        /// <param name="dividend"></param>
        /// <param name="divisor"></param>
        /// <returns></returns>
        public static double Mod(this double dividend, double divisor)
        {
            return dividend - System.Math.Floor(dividend / divisor) * divisor;
        }

        // ******************************************************************
    }

Ответ 6

Вот расширенная версия класса Саймона Хьюитта:

/// <summary>
/// Safely converts a <see cref="float"/> to an <see cref="int"/> for floating-point comparisons.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
public struct FloatToInt : IEquatable<FloatToInt>, IEquatable<float>, IEquatable<int>, IComparable<FloatToInt>, IComparable<float>, IComparable<int>
{
    /// <summary>
    /// Initializes a new instance of the <see cref="FloatToInt"/> class.
    /// </summary>
    /// <param name="floatValue">The <see cref="float"/> value to be converted to an <see cref="int"/>.</param>
    public FloatToInt(float floatValue)
        : this()
    {
        FloatValue = floatValue;
    }

    /// <summary>
    /// Gets the floating-point value as an integer.
    /// </summary>
    [FieldOffset(0)]
    public readonly int IntValue;

    /// <summary>
    /// Gets the floating-point value.
    /// </summary>
    [FieldOffset(0)]
    public readonly float FloatValue;

    /// <summary>
    /// Indicates whether the current object is equal to another object of the same type.
    /// </summary>
    /// <returns>
    /// true if the current object is equal to the <paramref name="other"/> parameter; otherwise, false.
    /// </returns>
    /// <param name="other">An object to compare with this object.</param>
    public bool Equals(FloatToInt other)
    {
        return other.IntValue == IntValue;
    }

    /// <summary>
    /// Indicates whether the current object is equal to another object of the same type.
    /// </summary>
    /// <returns>
    /// true if the current object is equal to the <paramref name="other"/> parameter; otherwise, false.
    /// </returns>
    /// <param name="other">An object to compare with this object.</param>
    public bool Equals(float other)
    {
        return IntValue == new FloatToInt(other).IntValue;
    }

    /// <summary>
    /// Indicates whether the current object is equal to another object of the same type.
    /// </summary>
    /// <returns>
    /// true if the current object is equal to the <paramref name="other"/> parameter; otherwise, false.
    /// </returns>
    /// <param name="other">An object to compare with this object.</param>
    public bool Equals(int other)
    {
        return IntValue == other;
    }

    /// <summary>
    /// Compares the current object with another object of the same type.
    /// </summary>
    /// <returns>
    /// A value that indicates the relative order of the objects being compared. The return value has the following meanings: Value Meaning Less than zero This object is less than the <paramref name="other"/> parameter.Zero This object is equal to <paramref name="other"/>. Greater than zero This object is greater than <paramref name="other"/>. 
    /// </returns>
    /// <param name="other">An object to compare with this object.</param>
    public int CompareTo(FloatToInt other)
    {
        return IntValue.CompareTo(other.IntValue);
    }

    /// <summary>
    /// Compares the current object with another object of the same type.
    /// </summary>
    /// <returns>
    /// A value that indicates the relative order of the objects being compared. The return value has the following meanings: Value Meaning Less than zero This object is less than the <paramref name="other"/> parameter.Zero This object is equal to <paramref name="other"/>. Greater than zero This object is greater than <paramref name="other"/>. 
    /// </returns>
    /// <param name="other">An object to compare with this object.</param>
    public int CompareTo(float other)
    {
        return IntValue.CompareTo(new FloatToInt(other).IntValue);
    }

    /// <summary>
    /// Compares the current object with another object of the same type.
    /// </summary>
    /// <returns>
    /// A value that indicates the relative order of the objects being compared. The return value has the following meanings: Value Meaning Less than zero This object is less than the <paramref name="other"/> parameter.Zero This object is equal to <paramref name="other"/>. Greater than zero This object is greater than <paramref name="other"/>. 
    /// </returns>
    /// <param name="other">An object to compare with this object.</param>
    public int CompareTo(int other)
    {
        return IntValue.CompareTo(other);
    }

    /// <summary>
    /// Indicates whether this instance and a specified object are equal.
    /// </summary>
    /// <returns>
    /// true if <paramref name="obj"/> and this instance are the same type and represent the same value; otherwise, false.
    /// </returns>
    /// <param name="obj">Another object to compare to. </param><filterpriority>2</filterpriority>
    public override bool Equals(object obj)
    {
        if (ReferenceEquals(null, obj))
        {
            return false;
        }
        if (obj.GetType() != typeof(FloatToInt))
        {
            return false;
        }
        return Equals((FloatToInt)obj);
    }

    /// <summary>
    /// Returns the hash code for this instance.
    /// </summary>
    /// <returns>
    /// A 32-bit signed integer that is the hash code for this instance.
    /// </returns>
    /// <filterpriority>2</filterpriority>
    public override int GetHashCode()
    {
        return IntValue;
    }

    /// <summary>
    /// Implicitly converts from a <see cref="FloatToInt"/> to an <see cref="int"/>.
    /// </summary>
    /// <param name="value">A <see cref="FloatToInt"/>.</param>
    /// <returns>An integer representation of the floating-point value.</returns>
    public static implicit operator int(FloatToInt value)
    {
        return value.IntValue;
    }

    /// <summary>
    /// Implicitly converts from a <see cref="FloatToInt"/> to a <see cref="float"/>.
    /// </summary>
    /// <param name="value">A <see cref="FloatToInt"/>.</param>
    /// <returns>The floating-point value.</returns>
    public static implicit operator float(FloatToInt value)
    {
        return value.FloatValue;
    }

    /// <summary>
    /// Determines if two <see cref="FloatToInt"/> instances have the same integer representation.
    /// </summary>
    /// <param name="left">A <see cref="FloatToInt"/>.</param>
    /// <param name="right">A <see cref="FloatToInt"/>.</param>
    /// <returns>true if the two <see cref="FloatToInt"/> have the same integer representation; otherwise, false.</returns>
    public static bool operator ==(FloatToInt left, FloatToInt right)
    {
        return left.IntValue == right.IntValue;
    }

    /// <summary>
    /// Determines if two <see cref="FloatToInt"/> instances have different integer representations.
    /// </summary>
    /// <param name="left">A <see cref="FloatToInt"/>.</param>
    /// <param name="right">A <see cref="FloatToInt"/>.</param>
    /// <returns>true if the two <see cref="FloatToInt"/> have different integer representations; otherwise, false.</returns>
    public static bool operator !=(FloatToInt left, FloatToInt right)
    {
        return !(left == right);
    }
}

Ответ 7

Вот как я его решил, с помощью метода двойного расширения с возможностью NULL.

    public static bool NearlyEquals(this double? value1, double? value2, double unimportantDifference = 0.0001)
    {
        if (value1 != value2)
        {
            if(value1 == null || value2 == null)
                return false;

            return Math.Abs(value1.Value - value2.Value) < unimportantDifference;
        }

        return true;
    }

...

        double? value1 = 100;
        value1.NearlyEquals(100.01); // will return false
        value1.NearlyEquals(100.000001); // will return true
        value1.NearlyEquals(100.01, 0.1); // will return true

Ответ 8

Хотя второй вариант более общий, первый вариант лучше, если у вас абсолютный допуск, и когда вам нужно выполнить многие из этих сравнений. Если это сравнение сказывается для каждого пикселя на изображении, умножение во вторых вариантах может замедлить выполнение до неприемлемых уровней производительности.

Ответ 9

Как насчет: b - delta < a && a < b + delta

Ответ 10

Я перевел образец из Майкла Боргвардта. Это результат:

public static bool NearlyEqual(float a, float b, float epsilon){
    float absA = Math.Abs (a);
    float absB = Math.Abs (b);
    float diff = Math.Abs (a - b);

    if (a == b) {
        return true;
    } else if (a == 0 || b == 0 || diff < float.Epsilon) {
        // a or b is zero or both are extremely close to it
        // relative error is less meaningful here
        return diff < epsilon;
    } else { // use relative error
        return diff / (absA + absB) < epsilon;
    }
}

Не стесняйтесь улучшать этот ответ.

Ответ 11

Я думаю, что ваш второй вариант - лучший выбор. Как правило, в сравнении с плавающей запятой вам часто остается только, чтобы одно значение находилось в пределах определенного допуска другого значения, контролируемого выбором epsilon.