Подтвердить что ты не робот

Примеры шаблонов и С++ 11

Посмотрим на одно из особых преимуществ шаблонов выражений: ET могут использоваться, чтобы избежать временного размера вектора в памяти, которые возникают в перегруженных операторах, таких как:

template<typename T>
std::vector<T> operator+(const std::vector<T>& a, const std::vector<T>& b)
{
  std::vector<T> tmp;   // vector-sized temporary
  for_each(...);
  return tmp;
}

В С++ 11 оператор return этой функции применяет семантику перемещения. Нет копии вектора. Это победа.

Однако, если я посмотрю на простое выражение типа

d = a + b + c;

Я вижу, что указанная выше функция вызывается дважды (для обоих operator+), а окончательное назначение может быть выполнено с помощью семантики перемещения.

Всего выполнено 2 цикла. Означает, что я выставляю временное и читаю его обратно. Для больших векторов это выпадает из кеша. Это хуже, чем шаблоны выражений. Они могут сделать все это всего за 1 цикл. ET могут выполнять вышеуказанный код, эквивалентный:

for(int i=0 ; i < vec_length ; ++i)
  d[i] = a[i] + b[i] + c[i];

Мне было интересно, могут ли лямбды вместе с семантикой перемещения или любой другой новой функцией сделать так же хорошо, как и ET. Любые мысли?

Edit:

В принципе, используя технику ET, компилятор строит дерево разбора что напоминает алгебраическое выражение с его типа. Это дерево состоит из внутренних узлов и листовых узлов. внутренние узлы представляют операции (сложение, умножение и т.д.) и узлы листа представляют собой ссылки на объекты данных.

Я попытался представить весь процесс вычисления в форме стек: выполните операцию из операционного стека и потяните следующие аргументы из стека аргументов и оценить операцию. Верните результат в стек, ожидающий операции.

Чтобы представить эти два разных объекта (стек операций и данные лист стека) Я объединил a std::tuple для операций и std::tuple для данных выходит в std::pair<>. Первоначально я использовал a std:vector, но это привело к превышениям времени выполнения.

Весь процесс проходит в два этапа: инициализация статической машины где инициализируются стеки операций и аргументов. И этап оценки, который инициируется назначением сопряженных контейнеров к вектору.

Я создал класс Vec, который содержит закрытый array<int,5> ( полезная нагрузка) и который имеет перегруженный оператор присваивания, который принимает "выражение".

Глобальная operator* перегружена для всех комбинаций взятия Vec и "expression", чтобы обеспечить правильную обработку также в случае где у нас больше, чем просто a*b. (Обратите внимание, я переключился на это образовательный пример умножения - в основном, чтобы быстро определить imull в ассемблере.)

Что делается сначала перед началом оценки, так это "извлечение" значения из задействованных объектов Vec и инициализации аргумента стек. Это было необходимо, чтобы не иметь разных видов предметов, лежащих вокруг: индексируемые векторы и неиндексируемые результаты. Это то, что Extractor для. Хорошая вещь: используются шаблоны Variadic в этом случае не будет накладных расходов во время выполнения (все это делается при время компиляции).

Все работает. Выражение хорошо оценено (я также добавлено дополнение, но это осталось здесь, чтобы соответствовать коду). Ниже вы можете увидеть выход ассемблера. Просто необработанные вычисления, точно так же, как вы хотите, чтобы это было: En-par с техникой ET.

Upshot. Новые языковые возможности С++ 11 предлагают вариационный шаблоны, которые (наряду с мета-программированием шаблонов) открывают область вычисления времени компиляции. Я показал здесь, как преимущества вариационные шаблоны могут использоваться для создания кода так же хорошо, как с традиционная техника ET.

#include<algorithm>
#include<iostream>
#include<vector>
#include<tuple>
#include<utility>
#include<array>



template<typename Target,typename Tuple, int N, bool end>
struct Extractor {
  template < typename ... Args >
  static Target index(int i,const Tuple& t, Args && ... args)
  {
    return Extractor<Target, Tuple,  N+1, 
             std::tuple_size<Tuple>::value == N+1>::
      index(i, t , std::forward<Args>(args)..., std::get<N>(t).vec[i] );
  }
};

template < typename Target, typename Tuple, int N >
struct Extractor<Target,Tuple,N,true>
{
    template < typename ... Args >
    static Target index(int i,Tuple const& t, 
            Args && ... args) { 
      return Target(std::forward<Args>(args)...); }
};

template < typename ... Vs > 
std::tuple<typename std::remove_reference<Vs>::type::type_t...>
extract(int i , const std::tuple<Vs...>& tpl)
{
  return Extractor<std::tuple<typename std::remove_reference<Vs>::type::type_t...>,
           std::tuple<Vs...>, 0,
           std::tuple_size<std::tuple<Vs...> >::value == 0>::index(i,tpl);
}


struct Vec {
  std::array<int,5> vec;
  typedef int type_t;

  template<typename... OPs,typename... VALs>
  Vec& operator=(const std::pair< std::tuple<VALs...> , std::tuple<OPs...> >& e) {
    for( int i = 0 ; i < vec.size() ; ++i ) {
      vec[i] = eval( extract(i,e.first) , e.second );
    }
  }
};




template<int OpPos,int ValPos, bool end>
struct StackMachine {
  template<typename... OPs,typename... VALs>
  static void eval_pos( std::tuple<VALs...>& vals , const std::tuple<OPs...> & ops )
  {
    std::get<ValPos+1>( vals ) =
      std::get<OpPos>(ops).apply( std::get<ValPos>( vals ) , 
                  std::get<ValPos+1>( vals ) );
    StackMachine<OpPos+1,ValPos+1,sizeof...(OPs) == OpPos+1>::eval_pos(vals,ops);
  }
};

template<int OpPos,int ValPos>
struct StackMachine<OpPos,ValPos,true> {
  template<typename... OPs,typename... VALs>
  static void eval_pos( std::tuple<VALs...>& vals , 
            const std::tuple<OPs...> & ops )
  {}
};



template<typename... OPs,typename... VALs>
int eval( const std::tuple<VALs...>& vals , const std::tuple<OPs...> & ops )
{
  StackMachine<0,0,false>::eval_pos(const_cast<std::tuple<VALs...>&>(vals),ops);
  return std::get<sizeof...(OPs)>(vals);
}




struct OpMul {
  static int apply(const int& lhs,const int& rhs)  {
    return lhs*rhs;
  }
};

std::pair< std::tuple< const Vec&, const Vec& > , std::tuple<OpMul> >
operator*(const Vec& lhs,const Vec& rhs)
{
  return std::make_pair( std::tuple< const Vec&, const Vec& >( lhs , rhs ) , 
             std::tuple<OpMul>( OpMul() ) );
}

template<typename... OPs,typename... VALs>
std::pair< std::tuple< const Vec&, VALs... > , std::tuple<OPs...,OpMul> >
operator*(const Vec& lhs,const std::pair< std::tuple< VALs... > , std::tuple<OPs...> >& rhs)
{
  return std::make_pair( std::tuple_cat( rhs.first , std::tuple< const Vec& >(lhs)  ) , 
             std::tuple_cat( rhs.second , std::tuple<OpMul>( OpMul() )  ) );
}

template<typename... OPs,typename... VALs>
std::pair< std::tuple< const Vec&, VALs... > , std::tuple<OPs...,OpMul> >
operator*(const std::pair< std::tuple< VALs... > , std::tuple<OPs...> >& lhs,
      const Vec& rhs)
{
  return std::make_pair( std::tuple_cat( lhs.first , std::tuple< const Vec& >(rhs)  ) , 
             std::tuple_cat( lhs.second , std::tuple<OpMul>( OpMul() ) ) );
}

int main()
{
  Vec d,c,b,a;


  for( int i = 0 ; i < d.vec.size() ; ++i ) {
    a.vec[i] = 10+i;
    b.vec[i] = 20+i;
    c.vec[i] = 30+i;
    d.vec[i] = 0;
  }

  d = a * b * c * a;

  for( int i = 0 ; i < d.vec.size() ; ++i ) 
    std::cout << d.vec[i] << std::endl;
}

Ассемблер, сгенерированный с помощью g++-4.6 -O3 (мне пришлось поместить некоторую зависимость от времени выполнения в инициализацию вектора, чтобы компилятор не вычислял все это во время компиляции, и вы действительно видите установки imull.)

imull   %esi, %edx
imull   32(%rsp), %edx
imull   %edx, %esi
movl    68(%rsp), %edx
imull   %ecx, %edx
movl    %esi, (%rsp)
imull   36(%rsp), %edx
imull   %ecx, %edx
movl    104(%rsp), %ecx
movl    %edx, 4(%rsp)
movl    72(%rsp), %edx
imull   %ecx, %edx
imull   40(%rsp), %edx
imull   %ecx, %edx
movl    108(%rsp), %ecx
movl    %edx, 8(%rsp)
movl    76(%rsp), %edx
imull   %ecx, %edx
imull   44(%rsp), %edx
imull   %ecx, %edx
movl    112(%rsp), %ecx
movl    %edx, 12(%rsp)
movl    80(%rsp), %edx
imull   %ecx, %edx
imull   %eax, %edx
imull   %ecx, %edx
movl    %edx, 16(%rsp)
4b9b3361

Ответ 1

Мне было интересно, могут ли лямбды вместе с семантикой перемещения или любой другой новой функцией сделать так же хорошо, как и ET. Любые мысли?

Быстрый ответ

Перемещение семантики не является полной панацеей самостоятельно - в С++ 11 все еще нужны технологии, такие как шаблоны выражений (ET), чтобы устранить накладные расходы, такие как перемещение данных! Итак, чтобы быстро ответить на ваш вопрос перед погружением в остальную часть моего ответа, переместить семантику и т.д., Не полностью заменяет ET, как показывает мой ответ ниже.

Подробный ответ

ET обычно возвращают прокси-объекты для отсрочки оценки до более позднего времени, поэтому непосредственное очевидное преимущество языковых возможностей языка С++ 11 до тех пор, пока код, инициирующий вычисление, не станет очевидным. Тем не менее, не хотелось бы писать ET-код, однако, что запускает генерации кода во время создания дерева выражений с помощью прокси. Симпатично, семантика перемещения С++ 11 и совершенная пересылка могут помочь избежать таких накладных расходов, если это произойдет иначе. (Такое было бы невозможно в С++ 03.)

По сути, при написании ETs вы хотите использовать языковые функции для генерации оптимального кода, когда вызываются функции-члены задействованных объектов-прокси. В С++ 11 это будет включать в себя использование совершенной пересылки, перемещение семантики по копированию и т.д., Если такое на самом деле все еще необходимо сверх того, что уже может сделать компилятор. Название игры состоит в том, чтобы свести к минимуму созданный код времени выполнения и/или максимизировать скорость выполнения и/или свести к минимуму накладные расходы времени выполнения.

Я действительно хотел попробовать некоторые ET с функциями С++ 11, чтобы увидеть, могу ли я удалить ВСЕ промежуточные временные типы экземпляров с выражением a = b + c + d;. (Поскольку это был просто забавный перерыв в моей обычной деятельности, поэтому я не сравнивал его и не писал E-код исключительно с использованием С++ 03. Также я не беспокоился обо всех аспектах полировки кода, которые появляются ниже.)

Для начала я не использовал lambdas - я предпочитал использовать явные типы и функции, поэтому я не буду спорить о/против лямбда в отношении вашего вопроса. Я предполагаю, что они будут похожи на использование функторов и не будут работать лучше, чем не-ET-код ниже (т.е. Потребуются перемещения) - по крайней мере до тех пор, пока компиляторы не смогут автоматически оптимизировать lambdas, используя их собственные внутренние ET для такого. Однако код, который я написал, использует семантику перемещения и совершенную пересылку. Вот что я сделал, начиная с результатов и затем, наконец, представляя код.

Я создал класс math_vector<N>, где N==3 и он определяет внутренний частный экземпляр std::array<long double, N>. Члены представляют собой конструктор по умолчанию, копируют и перемещают конструкторы и назначения, конструктор списка инициализаторов, деструктор, элемент swap(), оператор [] для доступа к элементам вектора и оператора + =. Используется без шаблонов выражений, этот код:

{
  cout << "CASE 1:\n";
  math_vector<3> a{1.0, 1.1, 1.2};
  math_vector<3> b{2.0, 2.1, 2.2};
  math_vector<3> c{3.0, 3.1, 3.2};
  math_vector<3> d{4.0, 4.1, 4.2};
  math_vector<3> result = a + b + c + d;
  cout << '[' << &result << "]: " << result << "\n";
}

(при компиляции с clang++ 3.1 или g++ 4.8 с - std=c++11 -O3):

CASE 1:
0x7fff8d6edf50: math_vector(initlist)
0x7fff8d6edef0: math_vector(initlist)
0x7fff8d6ede90: math_vector(initlist)
0x7fff8d6ede30: math_vector(initlist)
0x7fff8d6edd70: math_vector(copy: 0x7fff8d6edf50)
0x7fff8d6edda0: math_vector(move: 0x7fff8d6edd70)
0x7fff8d6eddd0: math_vector(move: 0x7fff8d6edda0)
0x7fff8d6edda0: ~math_vector()
0x7fff8d6edd70: ~math_vector()
[0x7fff8d6eddd0]: (10,10.4,10.8)
0x7fff8d6eddd0: ~math_vector()
0x7fff8d6ede30: ~math_vector()
0x7fff8d6ede90: ~math_vector()
0x7fff8d6edef0: ~math_vector()
0x7fff8d6edf50: ~math_vector()

т.е. четыре явно построенных экземпляра с использованием списков инициализаторов (т.е. элементов initlist), переменной result (т.е. 0x7fff8d6eddd0) и также позволяет копировать и перемещать еще три объекта.

Чтобы сосредоточиться только на временных и перемещениях, я создал второй случай, который создает только result как именованную переменную - все остальные значения r:

{
  cout << "CASE 2:\n";
  math_vector<3> result =
    math_vector<3>{1.0, 1.1, 1.2} +
    math_vector<3>{2.0, 2.1, 2.2} +
    math_vector<3>{3.0, 3.1, 3.2} +
    math_vector<3>{4.0, 4.1, 4.2}
  ;
  cout << '[' << &result << "]: " << result << "\n";
}

который выводит это (снова, когда ET не используются):

CASE 2:
0x7fff8d6edcb0: math_vector(initlist)
0x7fff8d6edc50: math_vector(initlist)
0x7fff8d6edce0: math_vector(move: 0x7fff8d6edcb0)
0x7fff8d6edbf0: math_vector(initlist)
0x7fff8d6edd10: math_vector(move: 0x7fff8d6edce0)
0x7fff8d6edb90: math_vector(initlist)
0x7fff8d6edd40: math_vector(move: 0x7fff8d6edd10)
0x7fff8d6edb90: ~math_vector()
0x7fff8d6edd10: ~math_vector()
0x7fff8d6edbf0: ~math_vector()
0x7fff8d6edce0: ~math_vector()
0x7fff8d6edc50: ~math_vector()
0x7fff8d6edcb0: ~math_vector()
[0x7fff8d6edd40]: (10,10.4,10.8)
0x7fff8d6edd40: ~math_vector()

что лучше: создаются только дополнительные объекты перемещения.

Но я хотел лучше: мне нужны нулевые дополнительные временные файлы и иметь код, как если бы я жестко закодировал его с одним стандартным предостережением: все явно созданные экземпляры все равно будут созданы (т.е. четыре конструктора initlist и result). Для этого я добавил код шаблона выражения следующим образом:

  • был создан класс proxy math_vector_expr<LeftExpr,BinaryOp,RightExpr>, чтобы еще не вычисленное выражение,
  • был создан класс proxy plus_op для хранения операции добавления,
  • конструктор был добавлен в math_vector для принятия объекта math_vector_expr и
  • Функции-члены "стартера" были добавлены, чтобы инициировать создание шаблона выражения.

Результаты с использованием ЭП прекрасны: никаких лишних времен в любом случае! Вышеуказанные предыдущие два случая:

CASE 1:
0x7fffe7180c60: math_vector(initlist)
0x7fffe7180c90: math_vector(initlist)
0x7fffe7180cc0: math_vector(initlist)
0x7fffe7180cf0: math_vector(initlist)
0x7fffe7180d20: math_vector(expr: 0x7fffe7180d90)
[0x7fffe7180d20]: (10,10.4,10.8)
0x7fffe7180d20: ~math_vector()
0x7fffe7180cf0: ~math_vector()
0x7fffe7180cc0: ~math_vector()
0x7fffe7180c90: ~math_vector()
0x7fffe7180c60: ~math_vector()

CASE 2:
0x7fffe7180dd0: math_vector(initlist)
0x7fffe7180e20: math_vector(initlist)
0x7fffe7180e70: math_vector(initlist)
0x7fffe7180eb0: math_vector(initlist)
0x7fffe7180d20: math_vector(expr: 0x7fffe7180dc0)
0x7fffe7180eb0: ~math_vector()
0x7fffe7180e70: ~math_vector()
0x7fffe7180e20: ~math_vector()
0x7fffe7180dd0: ~math_vector()
[0x7fffe7180d20]: (10,10.4,10.8)
0x7fffe7180d20: ~math_vector()

i.e, ровно 5 вызовов конструктора и 5 вызовов деструктора в каждом случае. Фактически, если вы попросите компилятор сгенерировать код ассемблера между вызовами конструктора 4 initlist и выводом result, получится эта красивая строка кода ассемблера:

fldt    128(%rsp)
leaq    128(%rsp), %rdi
leaq    80(%rsp), %rbp
fldt    176(%rsp)
faddp   %st, %st(1)
fldt    224(%rsp)
faddp   %st, %st(1)
fldt    272(%rsp)
faddp   %st, %st(1)
fstpt   80(%rsp)
fldt    144(%rsp)
fldt    192(%rsp)
faddp   %st, %st(1)
fldt    240(%rsp)
faddp   %st, %st(1)
fldt    288(%rsp)
faddp   %st, %st(1)
fstpt   96(%rsp)
fldt    160(%rsp)
fldt    208(%rsp)
faddp   %st, %st(1)
fldt    256(%rsp)
faddp   %st, %st(1)
fldt    304(%rsp)
faddp   %st, %st(1)
fstpt   112(%rsp)

с g++ и clang++ выводит аналогичный (даже меньший) код. Нет вызовов функций и т.д. - просто куча добавлений, которая ТОЧНО, что нужно!

Для этого следует код С++ 11. Просто #define DONT_USE_EXPR_TEMPL не использовать ET или вообще не определять его для использования ET.

#include <array>
#include <algorithm>
#include <initializer_list>
#include <type_traits>
#include <iostream>

//#define DONT_USE_EXPR_TEMPL

//===========================================================================

template <std::size_t N> class math_vector;

template <
  typename LeftExpr,
  typename BinaryOp,
  typename RightExpr
>
class math_vector_expr
{
  public:
    math_vector_expr() = delete;

    math_vector_expr(LeftExpr l, RightExpr r) : 
      l_(std::forward<LeftExpr>(l)), 
      r_(std::forward<RightExpr>(r))
    {
    }

    // Prohibit copying...
    math_vector_expr(math_vector_expr const&) = delete;
    math_vector_expr& operator =(math_vector_expr const&) = delete;

    // Allow moves...
    math_vector_expr(math_vector_expr&&) = default;
    math_vector_expr& operator =(math_vector_expr&&) = default;

    template <typename RE>
    auto operator +(RE&& re) const ->
      math_vector_expr<
        math_vector_expr<LeftExpr,BinaryOp,RightExpr> const&,
        BinaryOp,
        decltype(std::forward<RE>(re))
      >
    {
      return 
        math_vector_expr<
          math_vector_expr<LeftExpr,BinaryOp,RightExpr> const&,
          BinaryOp,
          decltype(std::forward<RE>(re))
        >(*this, std::forward<RE>(re))
      ;
    }

    auto le() -> 
      typename std::add_lvalue_reference<LeftExpr>::type
      { return l_; }

    auto le() const ->
      typename std::add_lvalue_reference<
        typename std::add_const<LeftExpr>::type
      >::type
      { return l_; }

    auto re() -> 
      typename std::add_lvalue_reference<RightExpr>::type
      { return r_; }

    auto re() const -> 
      typename std::add_lvalue_reference<
        typename std::add_const<RightExpr>::type
      >::type
      { return r_; }

    auto operator [](std::size_t index) const ->
      decltype(
        BinaryOp::apply(this->le()[index], this->re()[index])
      )
    {
      return BinaryOp::apply(le()[index], re()[index]);
    }

  private:
    LeftExpr l_;
    RightExpr r_;
};

//===========================================================================

template <typename T>
struct plus_op
{
  static T apply(T const& a, T const& b)
  {
    return a + b;
  }

  static T apply(T&& a, T const& b)
  {
    a += b;
    return std::move(a);
  }

  static T apply(T const& a, T&& b)
  {
    b += a;
    return std::move(b);
  }

  static T apply(T&& a, T&& b)
  {
    a += b;
    return std::move(a);
  }
};

//===========================================================================

template <std::size_t N>
class math_vector
{
  using impl_type = std::array<long double, N>;

  public:
    math_vector()
    {
      using namespace std;
      fill(begin(v_), end(v_), impl_type{});
      std::cout << this << ": math_vector()" << endl;
    }

    math_vector(math_vector const& mv) noexcept
    {
      using namespace std;
      copy(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector(copy: " << &mv << ")" << endl;
    }

    math_vector(math_vector&& mv) noexcept
    {
      using namespace std;
      move(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector(move: " << &mv << ")" << endl;
    }

    math_vector(std::initializer_list<typename impl_type::value_type> l)
    {
      using namespace std;
      copy(begin(l), end(l), begin(v_));
      std::cout << this << ": math_vector(initlist)" << endl;
    }

    math_vector& operator =(math_vector const& mv) noexcept
    {
      using namespace std;
      copy(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector op =(copy: " << &mv << ")" << endl;
      return *this;
    }

    math_vector& operator =(math_vector&& mv) noexcept
    {
      using namespace std;
      move(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector op =(move: " << &mv << ")" << endl;
      return *this;
    }

    ~math_vector()
    {
      using namespace std;
      std::cout << this << ": ~math_vector()" << endl;
    }

    void swap(math_vector& mv)
    {
      using namespace std;
      for (std::size_t i = 0; i<N; ++i)
        swap(v_[i], mv[i]);
    }

    auto operator [](std::size_t index) const
      -> typename impl_type::value_type const&
    {
      return v_[index];
    }

    auto operator [](std::size_t index)
      -> typename impl_type::value_type&
    {
      return v_[index];
    }

    math_vector& operator +=(math_vector const& b)
    {
      for (std::size_t i = 0; i<N; ++i)
        v_[i] += b[i];
      return *this;
    }

  #ifndef DONT_USE_EXPR_TEMPL

    template <typename LE, typename Op, typename RE>
    math_vector(math_vector_expr<LE,Op,RE>&& mve)
    {
      for (std::size_t i = 0; i < N; ++i)
        v_[i] = mve[i];
      std::cout << this << ": math_vector(expr: " << &mve << ")" << std::endl;
    }

    template <typename RightExpr>
    math_vector& operator =(RightExpr&& re)
    {
      for (std::size_t i = 0; i<N; ++i)
        v_[i] = re[i];
      return *this;
    }

    template <typename RightExpr>
    math_vector& operator +=(RightExpr&& re)
    {
      for (std::size_t i = 0; i<N; ++i)
        v_[i] += re[i];
      return *this;
    }

    template <typename RightExpr>
    auto operator +(RightExpr&& re) const ->
      math_vector_expr<
        math_vector const&, 
        plus_op<typename impl_type::value_type>,
        decltype(std::forward<RightExpr>(re))
      >
    {
      return 
        math_vector_expr<
          math_vector const&, 
          plus_op<typename impl_type::value_type>, 
          decltype(std::forward<RightExpr>(re))
        >(
          *this, 
          std::forward<RightExpr>(re)
        )
      ;
    }

  #endif // #ifndef DONT_USE_EXPR_TEMPL

  private:
    impl_type v_;
};

//===========================================================================

template <std::size_t N>
inline void swap(math_vector<N>& a, math_vector<N>& b)
{
  a.swap(b);
}

//===========================================================================

#ifdef DONT_USE_EXPR_TEMPL

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N> const& a, 
  math_vector<N> const& b
)
{
  math_vector<N> retval(a);
  retval += b;
  return retval;
}

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N>&& a, 
  math_vector<N> const& b
)
{
  a += b;
  return std::move(a);
}

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N> const& a, 
  math_vector<N>&& b
)
{
  b += a;
  return std::move(b);
}

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N>&& a, 
  math_vector<N>&& b
)
{
  a += std::move(b);
  return std::move(a);
}

#endif // #ifdef DONT_USE_EXPR_TEMPL

//===========================================================================

template <std::size_t N>
std::ostream& operator <<(std::ostream& os, math_vector<N> const& mv)
{
  os << '(';
  for (std::size_t i = 0; i < N; ++i)
    os << mv[i] << ((i+1 != N) ? ',' : ')');
  return os;
}

//===========================================================================

int main()
{
  using namespace std;

  try
  {
    {
      cout << "CASE 1:\n";
      math_vector<3> a{1.0, 1.1, 1.2};
      math_vector<3> b{2.0, 2.1, 2.2};
      math_vector<3> c{3.0, 3.1, 3.2};
      math_vector<3> d{4.0, 4.1, 4.2};
      math_vector<3> result = a + b + c + d;
      cout << '[' << &result << "]: " << result << "\n";
    }
    cout << endl;
    {
      cout << "CASE 2:\n";
      math_vector<3> result =
        math_vector<3>{1.0, 1.1, 1.2} +
        math_vector<3>{2.0, 2.1, 2.2} +
        math_vector<3>{3.0, 3.1, 3.2} +
        math_vector<3>{4.0, 4.1, 4.2}
      ;
      cout << '[' << &result << "]: " << result << "\n";
    }
  }
  catch (...)
  {
    return 1;
  }
}

//===========================================================================

Ответ 2

Вот скорректированная версия кода Пола Прени. Я сообщил автору по электронной почте и в комментариях; Я написал редактирование, но он был отклонен неквалифицированными рецензентами.

Ошибка в исходном коде заключается в том, что параметр шаблона BinaryOp для math_vector_expr:: operator + исправлен.

#include <array>
#include <algorithm>
#include <initializer_list>
#include <type_traits>
#include <iostream>

//#define DONT_USE_EXPR_TEMPL

//===========================================================================

template <std::size_t N> class math_vector;
template <typename T> struct plus_op;


template <
  typename LeftExpr,
  typename BinaryOp,
  typename RightExpr
>
class math_vector_expr
{
  public:
    typedef typename std::remove_reference<LeftExpr>::type::value_type value_type;

    math_vector_expr() = delete;

    math_vector_expr(LeftExpr l, RightExpr r) :
      l_(std::forward<LeftExpr>(l)),
      r_(std::forward<RightExpr>(r))
    {
    }

    // Prohibit copying...
    math_vector_expr(math_vector_expr const&) = delete;
    math_vector_expr& operator =(math_vector_expr const&) = delete;

    // Allow moves...
    math_vector_expr(math_vector_expr&&) = default;
    math_vector_expr& operator =(math_vector_expr&&) = default;

    template <typename RE>
    auto operator +(RE&& re) const ->
      math_vector_expr<
        math_vector_expr<LeftExpr,BinaryOp,RightExpr> const&,
        plus_op<value_type>,
        decltype(std::forward<RE>(re))
      >
    {
      return
        math_vector_expr<
          math_vector_expr<LeftExpr,BinaryOp,RightExpr> const&,
          plus_op<value_type>,
          decltype(std::forward<RE>(re))
        >(*this, std::forward<RE>(re))
      ;
    }

    auto le() ->
      typename std::add_lvalue_reference<LeftExpr>::type
      { return l_; }

    auto le() const ->
      typename std::add_lvalue_reference<
        typename std::add_const<LeftExpr>::type
      >::type
      { return l_; }

    auto re() ->
      typename std::add_lvalue_reference<RightExpr>::type
      { return r_; }

    auto re() const ->
      typename std::add_lvalue_reference<
        typename std::add_const<RightExpr>::type
      >::type
      { return r_; }

    auto operator [](std::size_t index) const ->
      value_type
    {
      return BinaryOp::apply(le()[index], re()[index]);
    }

  private:
    LeftExpr l_;
    RightExpr r_;
};

//===========================================================================

template <typename T>
struct plus_op
{
  static T apply(T const& a, T const& b)
  {
    return a + b;
  }

  static T apply(T&& a, T const& b)
  {
    a += b;
    return std::move(a);
  }

  static T apply(T const& a, T&& b)
  {
    b += a;
    return std::move(b);
  }

  static T apply(T&& a, T&& b)
  {
    a += b;
    return std::move(a);
  }
};

//===========================================================================

template <std::size_t N>
class math_vector
{
  using impl_type = std::array<long double, N>;

  public:
    typedef typename impl_type::value_type value_type;

    math_vector()
    {
      using namespace std;
      fill(begin(v_), end(v_), impl_type{});
      std::cout << this << ": math_vector()" << endl;
    }

    math_vector(math_vector const& mv) noexcept
    {
      using namespace std;
      copy(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector(copy: " << &mv << ")" << endl;
    }

    math_vector(math_vector&& mv) noexcept
    {
      using namespace std;
      move(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector(move: " << &mv << ")" << endl;
    }

    math_vector(std::initializer_list<value_type> l)
    {
      using namespace std;
      copy(begin(l), end(l), begin(v_));
      std::cout << this << ": math_vector(initlist)" << endl;
    }

    math_vector& operator =(math_vector const& mv) noexcept
    {
      using namespace std;
      copy(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector op =(copy: " << &mv << ")" << endl;
      return *this;
    }

    math_vector& operator =(math_vector&& mv) noexcept
    {
      using namespace std;
      move(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector op =(move: " << &mv << ")" << endl;
      return *this;
    }

    ~math_vector()
    {
      using namespace std;
      std::cout << this << ": ~math_vector()" << endl;
    }

    void swap(math_vector& mv)
    {
      using namespace std;
      for (std::size_t i = 0; i<N; ++i)
        swap(v_[i], mv[i]);
    }

    auto operator [](std::size_t index) const
      -> value_type const&
    {
      return v_[index];
    }

    auto operator [](std::size_t index)
      -> value_type&
    {
      return v_[index];
    }

    math_vector& operator +=(math_vector const& b)
    {
      for (std::size_t i = 0; i<N; ++i)
        v_[i] += b[i];
      return *this;
    }

  #ifndef DONT_USE_EXPR_TEMPL

    template <typename LE, typename Op, typename RE>
    math_vector(math_vector_expr<LE,Op,RE>&& mve)
    {
      for (std::size_t i = 0; i < N; ++i)
        v_[i] = mve[i];
      std::cout << this << ": math_vector(expr: " << &mve << ")" << std::endl;
    }

    template <typename RightExpr>
    math_vector& operator =(RightExpr&& re)
    {
      for (std::size_t i = 0; i<N; ++i)
        v_[i] = re[i];
      return *this;
    }

    template <typename RightExpr>
    math_vector& operator +=(RightExpr&& re)
    {
      for (std::size_t i = 0; i<N; ++i)
        v_[i] += re[i];
      return *this;
    }

    template <typename RightExpr>
    auto operator +(RightExpr&& re) const ->
      math_vector_expr<
        math_vector const&,
        plus_op<value_type>,
        decltype(std::forward<RightExpr>(re))
      >
    {
      return
        math_vector_expr<
          math_vector const&,
          plus_op<value_type>,
          decltype(std::forward<RightExpr>(re))
        >(
          *this,
          std::forward<RightExpr>(re)
        )
      ;
    }

  #endif // #ifndef DONT_USE_EXPR_TEMPL

  private:
    impl_type v_;
};

//===========================================================================

template <std::size_t N>
inline void swap(math_vector<N>& a, math_vector<N>& b)
{
  a.swap(b);
}

//===========================================================================

#ifdef DONT_USE_EXPR_TEMPL

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N> const& a,
  math_vector<N> const& b
)
{
  math_vector<N> retval(a);
  retval += b;
  return retval;
}

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N>&& a,
  math_vector<N> const& b
)
{
  a += b;
  return std::move(a);
}

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N> const& a,
  math_vector<N>&& b
)
{
  b += a;
  return std::move(b);
}

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N>&& a,
  math_vector<N>&& b
)
{
  a += std::move(b);
  return std::move(a);
}

#endif // #ifdef DONT_USE_EXPR_TEMPL

//===========================================================================

template <std::size_t N>
std::ostream& operator <<(std::ostream& os, math_vector<N> const& mv)
{
  os << '(';
  for (std::size_t i = 0; i < N; ++i)
    os << mv[i] << ((i+1 != N) ? ',' : ')');
  return os;
}

//===========================================================================

int main()
{
  using namespace std;

  try
  {
    {
      cout << "CASE 1:\n";
      math_vector<3> a{1.0, 1.1, 1.2};
      math_vector<3> b{2.0, 2.1, 2.2};
      math_vector<3> c{3.0, 3.1, 3.2};
      math_vector<3> d{4.0, 4.1, 4.2};
      math_vector<3> result = a + b + c + d;
      cout << '[' << &result << "]: " << result << "\n";
    }
    cout << endl;
    {
      cout << "CASE 2:\n";
      math_vector<3> result =
        math_vector<3>{1.0, 1.1, 1.2} +
        math_vector<3>{2.0, 2.1, 2.2} +
        math_vector<3>{3.0, 3.1, 3.2} +
        math_vector<3>{4.0, 4.1, 4.2}
      ;
      cout << '[' << &result << "]: " << result << "\n";
    }
  }
  catch (...)
  {
    return 1;
  }
}

//===========================================================================