Подтвердить что ты не робот

Разница между SHA256wRSRS и SHA256, затем RSA

В чем разница между вычислением подписи с помощью следующих двух методов?

  • Вычислить подпись с помощью Signature.getInstance("SHA256withRSA")
  • Вычислить SHA256 с помощью MessageDigest.getInstance("SHA-256") и вычислить дайджест с помощью Signature.getInstance("RSA");, чтобы получить подпись?

Если они разные, существует ли способ изменить метод 2, чтобы оба метода дали один и тот же результат?

Я попробовал следующий код:

package mysha.mysha;
import java.security.MessageDigest;
import java.security.PrivateKey;
import java.security.Security;
import java.security.Signature;

import org.bouncycastle.jce.provider.BouncyCastleProvider;

public class MySHA256 {

    public static void main(String[] args) throws Exception {
        //compute SHA256 first
        Security.addProvider(new BouncyCastleProvider());
        String s = "1234";
        MessageDigest messageDigest = MessageDigest.getInstance("SHA-256");
        messageDigest.update(s.getBytes());
        byte[] outputDigest = messageDigest.digest();       
        //sign SHA256 with RSA
        PrivateKey privateKey = Share.loadPk8("D:/key.pk8");
        Signature rsaSignature = Signature.getInstance("RSA");
        rsaSignature.initSign(privateKey);
        rsaSignature.update(outputDigest);
        byte[] signed = rsaSignature.sign();
        System.out.println(bytesToHex(signed));


        //compute SHA256withRSA as a single step
        Signature rsaSha256Signature = Signature.getInstance("SHA256withRSA");
        rsaSha256Signature.initSign(privateKey);
        rsaSha256Signature.update(s.getBytes());
        byte[] signed2 = rsaSha256Signature.sign();
        System.out.println(bytesToHex(signed2));
    }

    public static String bytesToHex(byte[] bytes) {
        final char[] hexArray = "0123456789ABCDEF".toCharArray();
        char[] hexChars = new char[bytes.length * 2];
        for ( int j = 0; j < bytes.length; j++ ) {
            int v = bytes[j] & 0xFF;
            hexChars[j * 2] = hexArray[v >>> 4];
            hexChars[j * 2 + 1] = hexArray[v & 0x0F];
        }
        return new String(hexChars);
    }

}

Тем не менее, выходы не совпадают.

Ниже приведен пример вывода с моим тестовым ключом:

метод 1: 61427B2A2CF1902A4B15F80156AEB09D8096BA1271F89F1919C78B18D0BABA08AA043A0037934B5AE3FC0EB7702898AC5AE96517AFD93433DF540353BCCE72A470CFA4B765D5835E7EA77743F3C4A0ABB11414B0141EF7ECCD2D5285A69728D0D0709C2537D6A772418A928B0E168F81C99B538FD25BDA7496AE8E185AC46F39

метод 2: BA9039B75CA8A40DC9A7AED51E174E2B3365B2D6A1CF94DF70A00D898074A51FDD9973672DDE95CBAC39EBE4F3BA529C538ED0FF9F0A3F9A8CE203F1DFFA907DC508643906AA86DA54DFF8A90B00F5F116D13A53731384C1C5C9C4E75A3E41DAF88F74D2F1BCCF818764A4AB144A081B641C1C488AC8B194EB14BC9D1928E4EA

Обновление 1:

В соответствии с ответом mkl, я изменяю свой код, но все равно не могу понять. Я все еще что-то пропустил?

package mysha.mysha;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.security.MessageDigest;
import java.security.PrivateKey;
import java.security.Security;
import java.security.Signature;

import org.bouncycastle.asn1.DEROutputStream;
import org.bouncycastle.asn1.nist.NISTObjectIdentifiers;
import org.bouncycastle.asn1.x509.AlgorithmIdentifier;
import org.bouncycastle.asn1.x509.DigestInfo;
import org.bouncycastle.jce.provider.BouncyCastleProvider;

public class MySHA256 { 
    public static void main(String[] args) throws Exception {
        //compute SHA256 first
        Security.addProvider(new BouncyCastleProvider());
        String s = "1234";
        MessageDigest messageDigest = MessageDigest.getInstance("SHA-256");
        messageDigest.update(s.getBytes());
        byte[] outputDigest = messageDigest.digest();

        AlgorithmIdentifier sha256Aid = new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256, null);
        DigestInfo di = new DigestInfo(sha256Aid, outputDigest);
        //sign SHA256 with RSA
        PrivateKey privateKey = Share.loadPk8("D:/key.pk8");
        Signature rsaSignature = Signature.getInstance("RSA");
        rsaSignature.initSign(privateKey);
        rsaSignature.update(di.toASN1Primitive().getEncoded());
        byte[] signed = rsaSignature.sign();
        System.out.println("method 1: "+bytesToHex(signed));


        //compute SHA256withRSA as a single step
        Signature rsaSha256Signature = Signature.getInstance("SHA256withRSA");
        rsaSha256Signature.initSign(privateKey);
        rsaSha256Signature.update(s.getBytes());
        byte[] signed2 = rsaSha256Signature.sign();
        System.out.println("method 2: "+bytesToHex(signed2));
    }
    public static String bytesToHex(byte[] bytes) {
        final char[] hexArray = "0123456789ABCDEF".toCharArray();
        char[] hexChars = new char[bytes.length * 2];
        for ( int j = 0; j < bytes.length; j++ ) {
            int v = bytes[j] & 0xFF;
            hexChars[j * 2] = hexArray[v >>> 4];
            hexChars[j * 2 + 1] = hexArray[v & 0x0F];
        }
        return new String(hexChars);
    }
}

метод 1: 675D868546777C5A9B5E74988E0CD41A46A929C1D0890B32B1FBE34F12D68F1FDB56E623294DB903F6AC60A2ADA61976B27C66056A16F5790A78168803AD2C685F9B4CF983C939305A9819CBA9D95441CD7214D40D06A98B4DDF9692A7D300DD51E808A6722A0D7C288DBD476DF4DEEBB3DAF41CFC0978F24424960F86F0284E

метод 2: BA9039B75CA8A40DC9A7AED51E174E2B3365B2D6A1CF94DF70A00D898074A51FDD9973672DDE95CBAC39EBE4F3BA529C538ED0FF9F0A3F9A8CE203F1DFFA907DC508643906AA86DA54DFF8A90B00F5F116D13A53731384C1C5C9C4E75A3E41DAF88F74D2F1BCCF818764A4AB144A081B641C1C488AC8B194EB14BC9D1928E4EA

4b9b3361

Ответ 1

Разница

Разница между подписанием с "SHA256withRSA" и вычислением хэша SHA256 и его подпиской с "RSA" (= "NONEwithRSA") прежде всего такова, что в первом случае вычисленное значение хэш-значения SHA-256 сначала инкапсулировано в DigestInfo структура

DigestInfo ::= SEQUENCE {
    digestAlgorithm DigestAlgorithm,
    digest OCTET STRING
}

перед тем, как быть дополненным, а затем зашифрованным, в то время как в последнем случае голый SHA256 хэш-значение заполняется и шифруется.

Если они разные, существует ли способ изменить метод 2, чтобы оба метода дали один и тот же результат?

Прежде всего вам нужно будет инкапсулировать хеш-значение в структуру DigestInfo перед подписанием с помощью "NONEwithRSA".

RFC 3447 Раздел 9.2 помогает здесь, указав в примечании 1, что

1. For the six hash functions mentioned in Appendix B.1, the DER
   encoding T of the DigestInfo value is equal to the following:
   ...
   SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00
                04 20 || H.

Выполнение работы

В ответ на раздел выше OP обновил свой вопрос с обновленным кодом. К сожалению, он еще не работал для него. Таким образом,

Код OP

Я выполнил код OP (SignInSteps.java). Поскольку он не предоставлял секретный ключ, я использовал собственный тестовый ключ (demo-rsa2048.p12). Результат:

GreenhandOriginal:
1B9557B6A076226FA4C26A9370A0E9E91B627F14204D427B03294EC4BFC346FDEEFB3A483B1E5A0593F26E9DE87F9202E1064F4D75B24B8FA355B23A560AF263361BB94B2339C3A01952C447CAC862AA9DCAB64B09ABAA0AD50232CDB299D1E4B5F7138F448A87ED32BFF4B5B66F35FFA08F13FD98DFCEC7114710282E463245311DA7A56CBEA958D88137A8B507D8601464535978EFE36EE37EF721260DB7112484F244409F0BD64C823ACFB13D06ABA84A9A0C5AB207E19231D6A71CC80F07FDA2A9654F0F609C2C3396D6DFFBBB10EF4C3D4B5ADFC72EACC044E81F252B699F095CFEF8630B284B1F6BD7201367BD5FDF2BB4C20BD07B9CC20B214D86C729
4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA

GreenhandUpdated:
method 1: 4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA
method 2: 4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA

Таким образом, в отличие от наблюдений ОП, сигнатуры равны в случае обновленного кода.

Не допуская ошибок копирования и вставки, могут быть другие различия.

Окружение

Я тестировал с использованием Java 8 (1.8.0_20) с добавленными неограниченными файлами полномочий и BouncyCastle 1.52, 1.49 и 1.46 (с небольшой модификацией тестового кода из-за изменений API BC).

ОП упоминается в комментарии:

Java - это обновление JRE 8 66. BouncyCastle - bcprov-jdk15on-153.jar.

Таким образом, я обновил Java, до сих пор нет разницы.

Затем я обновил BouncyCastle до 1.53. И действительно, неожиданно результаты были разными:

GreenhandOriginal:
1B9557B6A076226FA4C26A9370A0E9E91B627F14204D427B03294EC4BFC346FDEEFB3A483B1E5A0593F26E9DE87F9202E1064F4D75B24B8FA355B23A560AF263361BB94B2339C3A01952C447CAC862AA9DCAB64B09ABAA0AD50232CDB299D1E4B5F7138F448A87ED32BFF4B5B66F35FFA08F13FD98DFCEC7114710282E463245311DA7A56CBEA958D88137A8B507D8601464535978EFE36EE37EF721260DB7112484F244409F0BD64C823ACFB13D06ABA84A9A0C5AB207E19231D6A71CC80F07FDA2A9654F0F609C2C3396D6DFFBBB10EF4C3D4B5ADFC72EACC044E81F252B699F095CFEF8630B284B1F6BD7201367BD5FDF2BB4C20BD07B9CC20B214D86C729
4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA

GreenhandUpdated:
method 1: 6BAAAC1060B6D0D56AD7D45A1BEECE82391088FF47A8D8179EFBBEB0925C4AC6C9DFC56F672E99F4A6E3C106A866B70513C25AE11B267286C584A136FBC20C4D1E7B10697352DF020BA5D67029A6EF890B2674F02C496CB1F1EBB0D4DBB580EB045DBB0FA0D7D73B418FF63F345658C6C73DA742FE260C9639C94967A928F74F61DACA03310B9986C32D83CAB8C7FC13E80612CCFC0B7E3E35BEA04EAEBDAA55FB8837B4661DC71499B4A0B1D36E1D23D9927CDB55C237D5AB2E5C088F29C6FAFAD9FE64DD4851CEC113560864E9923D485D0C6E092C8EBE82D29C312E5835B38EE9BD6B8B4BCC753EF4EE4D0977B2E781B391839E3EC31C36E5B1AA0CE90227
method 2: 4B9ECA6DD47C1B230D972E7DA026165F1CE743EC96825E4C13DFE2C6437FE673A13CA622047EE7D2F7C5280198D81550A1CBD17F8E8A3C4C2D53A746FA6464AA5194FC2782527B014F017008D89BB2C80B7FA367C74FE01369986B56BCE7DC573A11ED884511F0CB12160CA5E42D488451AA8961BF5A9F71E6A5E89F19BC8EFAC26DDE989A0369667EE74372F6E558887FE2561EA926B441AB8F0FD3DEDD608A671011313372084B059CAD7E4807AC852C0873C57F216349422771C089678BAC3021D054C4427EADE70219E251617B83E68640DD7D03C3F99E47F79EB71C124F59EDEA724496A4552F2E9E1F90DDE550745E85483D823F146982C6D2008FE9AA

Интересно, что только значение для метода 1 в обновленном коде отличается. Таким образом, я посмотрел на промежуточные объекты в этом случае

[BC 1.52]
hash: 03AC674216F3E15C761EE1A5E255F067953623C8B388B4459E13F978D7C846F4
algo: 2.16.840.1.101.3.4.2.1
info: 3031300D06096086480165030402010500042003AC674216F3E15C761EE1A5E255F067953623C8B388B4459E13F978D7C846F4

[BC 1.53]
hash: 03AC674216F3E15C761EE1A5E255F067953623C8B388B4459E13F978D7C846F4
algo: 2.16.840.1.101.3.4.2.1
info: 302F300B0609608648016503040201042003AC674216F3E15C761EE1A5E255F067953623C8B388B4459E13F978D7C846F4

Таким образом, BouncyCastle 1.53 по-разному кодирует объект DigestInfo! И кодировка в 1.52 (и ниже) является той, которую ожидает RFC 3447 Раздел 9.2.

Взглянув на дампы ASN.1, вы увидите, что BC 1.52 кодирует AlgorithmIdentifier как

 2  13:   SEQUENCE {
   <06 09>
 4   9:     OBJECT IDENTIFIER sha-256 (2 16 840 1 101 3 4 2 1)
      :       (NIST Algorithm)
   <05 00>
15   0:     NULL
      :     }

в то время как BC 1.53 создает

 2  11:   SEQUENCE {
   <06 09>
 4   9:     OBJECT IDENTIFIER sha-256 (2 16 840 1 101 3 4 2 1)
      :       (NIST Algorithm)
      :     }

Итак, в 1.53 параметры алгоритма отсутствуют вообще. Это предполагает изменение строки

AlgorithmIdentifier sha256Aid = new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256, null);

к

AlgorithmIdentifier sha256Aid = new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256, DERNull.INSTANCE);

и внезапно он работает с BouncyCastle 1.53, значения для метода 1 и метода 2 совпадают!;)

TL; DR

Не используйте null в качестве параметров SHA-256 при создании экземпляра AlgorithmIdentifier, вместо этого используйте DERNull.INSTANCE.

Как я...

В комментарии OP указал, что он хотел бы узнать больше о

  • Как вы проверяете промежуточный объект BouncyCastle и
  • Как вы создаете дампы ASN.1.

Итак...

... проверить промежуточный объект

Довольно просто. Сначала я разделил строку

rsaSignature.update(di.toASN1Primitive().getEncoded());

в обновленном коде как

byte[] encodedDigestInfo = di.toASN1Primitive().getEncoded();
rsaSignature.update(encodedDigestInfo);

а затем добавлены выходы консоли

System.out.println("    hash: " + bytesToHex(outputDigest));
System.out.println("    algo: " + sha256Aid.getAlgorithm());
System.out.println("    info: " + bytesToHex(encodedDigestInfo));

Наконец, я выполнил код с различными версиями BouncyCastle.

... создавать отвалы ASN.1

Существует известная утилита dumpasn1 от Peter Gutmann, которая стала ядром многих инструментов командной строки и графического интерфейса для создания и отображения дампов ASN.1. В настоящее время я использую GUIdumpASN-ng.

В этом случае я сохранил содержимое byte[] encodedDigestInfo в файл (который можно сделать с помощью, например, Files.write), и открыл эти файлы в GUIdumpASN-ng.