Подтвердить что ты не робот

NumPy-версия "Экспоненциально-взвешенного скользящего среднего", эквивалентная pandas.ewm(). Mean()

Как мне получить экспоненциально-взвешенное скользящее среднее в NumPy, как в пандах?

import pandas as pd
import pandas_datareader as pdr
from datetime import datetime

# Declare variables
ibm = pdr.get_data_yahoo(symbols='IBM', start=datetime(2000, 1, 1), end=datetime(2012, 1, 1)).reset_index(drop=True)['Adj Close']
windowSize = 20

# Get PANDAS exponential weighted moving average
ewm_pd = pd.DataFrame(ibm).ewm(span=windowSize, min_periods=windowSize).mean().as_matrix()

print(ewm_pd)

Я попробовал следующее с NumPy

import numpy as np
import pandas_datareader as pdr
from datetime import datetime

# From this post: http://stackoverflow.com/a/40085052/3293881 by @Divakar
def strided_app(a, L, S): # Window len = L, Stride len/stepsize = S
    nrows = ((a.size - L) // S) + 1
    n = a.strides[0]
    return np.lib.stride_tricks.as_strided(a, shape=(nrows, L), strides=(S * n, n))

def numpyEWMA(price, windowSize):
    weights = np.exp(np.linspace(-1., 0., windowSize))
    weights /= weights.sum()

    a2D = strided_app(price, windowSize, 1)

    returnArray = np.empty((price.shape[0]))
    returnArray.fill(np.nan)
    for index in (range(a2D.shape[0])):
        returnArray[index + windowSize-1] = np.convolve(weights, a2D[index])[windowSize - 1:-windowSize + 1]
    return np.reshape(returnArray, (-1, 1))

# Declare variables
ibm = pdr.get_data_yahoo(symbols='IBM', start=datetime(2000, 1, 1), end=datetime(2012, 1, 1)).reset_index(drop=True)['Adj Close']
windowSize = 20

# Get NumPy exponential weighted moving average
ewma_np = numpyEWMA(ibm, windowSize)

print(ewma_np)

Но результаты не такие, как у панд.

Может быть, есть лучший подход для вычисления экспоненциально-взвешенного скользящего среднего непосредственно в NumPy и получения того же результата, что и pandas.ewm().mean()?

На 60 000 запросов на решение панд я получаю около 230 секунд. Я уверен, что с чистым NumPy это может быть значительно уменьшено.

4b9b3361

Ответ 1

Обновлено 06/06/2019

ЧИСТАЯ ЧУВСТВИТЕЛЬНАЯ, БЫСТРАЯ И ВЕКТОРИЗОВАННАЯ РЕШЕНИЕ ДЛЯ БОЛЬШИХ ВХОДОВ

параметр out для вычисления на месте, параметр dtype параметр order индекса

Эта функция эквивалентна ewm(adjust=False).mean() панд ewm(adjust=False).mean(), но намного быстрее. ewm(adjust=True).mean() (по умолчанию для панд) может выдавать разные значения в начале результата. Я работаю над тем, чтобы добавить функциональность adjust к этому решению.

Ответ @Divakar приводит к проблемам с точностью с плавающей запятой, когда ввод слишком велик. Это связано с тем, что (1-alpha)**(n+1) → 0 когда n → inf а alpha → 1, что приводит к появлению в расчете значений деления на ноль и NaN.

Вот мое самое быстрое решение без проблем точности, почти полностью векторизованное. Это стало немного сложнее, но производительность отличная, особенно для действительно огромных входов. Без использования вычислений на месте (что возможно при использовании параметра out, экономя время выделения памяти): 3,62 секунды для входного вектора элемента 100M, 3,2 мс для вектора входа элемента 100K и 293 мкс для вектора входа 5000 элементов на довольно старом ПК (результаты будут отличаться в зависимости от row_size alpha/row_size).

# tested with python3 & numpy 1.15.2
import numpy as np

def ewma_vectorized_safe(data, alpha, row_size=None, dtype=None, order='C', out=None):
    """
    Reshapes data before calculating EWMA, then iterates once over the rows
    to calculate the offset without precision issues
    :param data: Input data, will be flattened.
    :param alpha: scalar float in range (0,1)
        The alpha parameter for the moving average.
    :param row_size: int, optional
        The row size to use in the computation. High row sizes need higher precision,
        low values will impact performance. The optimal value depends on the
        platform and the alpha being used. Higher alpha values require lower
        row size. Default depends on dtype.
    :param dtype: optional
        Data type used for calculations. Defaults to float64 unless
        data.dtype is float32, then it will use float32.
    :param order: {'C', 'F', 'A'}, optional
        Order to use when flattening the data. Defaults to 'C'.
    :param out: ndarray, or None, optional
        A location into which the result is stored. If provided, it must have
        the same shape as the desired output. If not provided or 'None',
        a freshly-allocated array is returned.
    :return: The flattened result.
    """
    data = np.array(data, copy=False)

    if dtype is None:
        if data.dtype == np.float32:
            dtype = np.float32
        else:
            dtype = np.float
    else:
        dtype = np.dtype(dtype)

    row_size = int(row_size) if row_size is not None 
               else get_max_row_size(alpha, dtype)

    if data.size <= row_size:
        # The normal function can handle this input, use that
        return ewma_vectorized(data, alpha, dtype=dtype, order=order, out=out)

    if data.ndim > 1:
        # flatten input
        data = np.reshape(data, -1, order=order)

    if out is None:
        out = np.empty_like(data, dtype=dtype)
    else:
        assert out.shape == data.shape
        assert out.dtype == dtype

    row_n = int(data.size // row_size)  # the number of rows to use
    trailing_n = int(data.size % row_size)  # the amount of data leftover
    first_offset = data[0]

    if trailing_n > 0:
        # set temporary results to slice view of out parameter
        out_main_view = np.reshape(out[:-trailing_n], (row_n, row_size))
        data_main_view = np.reshape(data[:-trailing_n], (row_n, row_size))
    else:
        out_main_view = out
        data_main_view = data

    # get all the scaled cumulative sums with 0 offset
    ewma_vectorized_2d(data_main_view, alpha, axis=1, offset=0, dtype=dtype,
                       order='C', out=out_main_view)

    scaling_factors = (1 - alpha) ** np.arange(1, row_size + 1)
    last_scaling_factor = scaling_factors[-1]

    # create offset array
    offsets = np.empty(out_main_view.shape[0], dtype=dtype)
    offsets[0] = first_offset
    # iteratively calculate offset for each row
    for i in range(1, out_main_view.shape[0]):
        offsets[i] = offsets[i - 1] * last_scaling_factor + out_main_view[i - 1, -1]

    # add the offsets to the result
    out_main_view += offsets[:, np.newaxis] * scaling_factors[np.newaxis, :]

    if trailing_n > 0:
        # process trailing data in the 2nd slice of the out parameter
        ewma_vectorized(data[-trailing_n:], alpha, offset=out_main_view[-1, -1],
                        dtype=dtype, order='C', out=out[-trailing_n:])
    return out

def get_max_row_size(alpha, dtype=float):
    assert 0. <= alpha < 1.
    # This will return the maximum row size possible on 
    # your platform for the given dtype. I can find no impact on accuracy
    # at this value on my machine.
    # Might not be the optimal value for speed, which is hard to predict
    # due to numpy optimizations
    # Use np.finfo(dtype).eps if you  are worried about accuracy
    # and want to be extra safe.
    epsilon = np.finfo(dtype).tiny
    # If this produces an OverflowError, make epsilon larger
    return int(np.log(epsilon)/np.log(1-alpha)) + 1

Функция 1D EWMA:

def ewma_vectorized(data, alpha, offset=None, dtype=None, order='C', out=None):
    """
    Calculates the exponential moving average over a vector.
    Will fail for large inputs.
    :param data: Input data
    :param alpha: scalar float in range (0,1)
        The alpha parameter for the moving average.
    :param offset: optional
        The offset for the moving average, scalar. Defaults to data[0].
    :param dtype: optional
        Data type used for calculations. Defaults to float64 unless
        data.dtype is float32, then it will use float32.
    :param order: {'C', 'F', 'A'}, optional
        Order to use when flattening the data. Defaults to 'C'.
    :param out: ndarray, or None, optional
        A location into which the result is stored. If provided, it must have
        the same shape as the input. If not provided or 'None',
        a freshly-allocated array is returned.
    """
    data = np.array(data, copy=False)

    if dtype is None:
        if data.dtype == np.float32:
            dtype = np.float32
        else:
            dtype = np.float64
    else:
        dtype = np.dtype(dtype)

    if data.ndim > 1:
        # flatten input
        data = data.reshape(-1, order)

    if out is None:
        out = np.empty_like(data, dtype=dtype)
    else:
        assert out.shape == data.shape
        assert out.dtype == dtype

    if data.size < 1:
        # empty input, return empty array
        return out

    if offset is None:
        offset = data[0]

    alpha = np.array(alpha, copy=False).astype(dtype, copy=False)

    # scaling_factors -> 0 as len(data) gets large
    # this leads to divide-by-zeros below
    scaling_factors = np.power(1. - alpha, np.arange(data.size + 1, dtype=dtype),
                               dtype=dtype)
    # create cumulative sum array
    np.multiply(data, (alpha * scaling_factors[-2]) / scaling_factors[:-1],
                dtype=dtype, out=out)
    np.cumsum(out, dtype=dtype, out=out)

    # cumsums / scaling
    out /= scaling_factors[-2::-1]

    if offset != 0:
        offset = np.array(offset, copy=False).astype(dtype, copy=False)
        # add offsets
        out += offset * scaling_factors[1:]

    return out

Функция 2D EWMA:

def ewma_vectorized_2d(data, alpha, axis=None, offset=None, dtype=None, order='C', out=None):
    """
    Calculates the exponential moving average over a given axis.
    :param data: Input data, must be 1D or 2D array.
    :param alpha: scalar float in range (0,1)
        The alpha parameter for the moving average.
    :param axis: The axis to apply the moving average on.
        If axis==None, the data is flattened.
    :param offset: optional
        The offset for the moving average. Must be scalar or a
        vector with one element for each row of data. If set to None,
        defaults to the first value of each row.
    :param dtype: optional
        Data type used for calculations. Defaults to float64 unless
        data.dtype is float32, then it will use float32.
    :param order: {'C', 'F', 'A'}, optional
        Order to use when flattening the data. Ignored if axis is not None.
    :param out: ndarray, or None, optional
        A location into which the result is stored. If provided, it must have
        the same shape as the desired output. If not provided or 'None',
        a freshly-allocated array is returned.
    """
    data = np.array(data, copy=False)

    assert data.ndim <= 2

    if dtype is None:
        if data.dtype == np.float32:
            dtype = np.float32
        else:
            dtype = np.float64
    else:
        dtype = np.dtype(dtype)

    if out is None:
        out = np.empty_like(data, dtype=dtype)
    else:
        assert out.shape == data.shape
        assert out.dtype == dtype

    if data.size < 1:
        # empty input, return empty array
        return out

    if axis is None or data.ndim < 2:
        # use 1D version
        if isinstance(offset, np.ndarray):
            offset = offset[0]
        return ewma_vectorized(data, alpha, offset, dtype=dtype, order=order,
                               out=out)

    assert -data.ndim <= axis < data.ndim

    # create reshaped data views
    out_view = out
    if axis < 0:
        axis = data.ndim - int(axis)

    if axis == 0:
        # transpose data views so columns are treated as rows
        data = data.T
        out_view = out_view.T

    if offset is None:
        # use the first element of each row as the offset
        offset = np.copy(data[:, 0])
    elif np.size(offset) == 1:
        offset = np.reshape(offset, (1,))

    alpha = np.array(alpha, copy=False).astype(dtype, copy=False)

    # calculate the moving average
    row_size = data.shape[1]
    row_n = data.shape[0]
    scaling_factors = np.power(1. - alpha, np.arange(row_size + 1, dtype=dtype),
                               dtype=dtype)
    # create a scaled cumulative sum array
    np.multiply(
        data,
        np.multiply(alpha * scaling_factors[-2], np.ones((row_n, 1), dtype=dtype),
                    dtype=dtype)
        / scaling_factors[np.newaxis, :-1],
        dtype=dtype, out=out_view
    )
    np.cumsum(out_view, axis=1, dtype=dtype, out=out_view)
    out_view /= scaling_factors[np.newaxis, -2::-1]

    if not (np.size(offset) == 1 and offset == 0):
        offset = offset.astype(dtype, copy=False)
        # add the offsets to the scaled cumulative sums
        out_view += offset[:, np.newaxis] * scaling_factors[np.newaxis, 1:]

    return out

использование:

data_n = 100000000
data = ((0.5*np.random.randn(data_n)+0.5) % 1) * 100

span = 5000  # span >= 1
alpha = 2/(span+1)  # for pandas' span parameter

# com = 1000  # com >= 0
# alpha = 1/(1+com)  # for pandas' center-of-mass parameter

# halflife = 100  # halflife > 0
# alpha = 1 - np.exp(np.log(0.5)/halflife)  # for pandas' half-life parameter

result = ewma_vectorized_safe(data, alpha)

Просто совет

Легко вычислить "размер окна" (технически экспоненциальные средние имеют бесконечные "окна") для данной alpha, в зависимости от вклада данных в этом окне в среднее значение. Это полезно, например, для выбора того, сколько из начала результата следует считать ненадежным из-за граничных эффектов.

def window_size(alpha, sum_proportion):
    # Increases with increased sum_proportion and decreased alpha
    # solve (1-alpha)**window_size = (1-sum_proportion) for window_size        
    return int(np.log(1-sum_proportion) / np.log(1-alpha))

alpha = 0.02
sum_proportion = .99  # window covers 99% of contribution to the moving average
window = window_size(alpha, sum_proportion)  # = 227
sum_proportion = .75  # window covers 75% of contribution to the moving average
window = window_size(alpha, sum_proportion)  # = 68

Отношение alpha = 2/(window_size + 1.0) используемое в этой теме (опция 'span' от pandas), является очень грубым приближением обратной функции выше (с sum_proportion~=0.87). alpha = 1 - np.exp(np.log(1-sum_proportion)/window_size) является более точным (параметр "период полураспада" от pandas равен этой формуле с sum_proportion=0.5).

В следующем примере data представляют непрерывный шумовой сигнал. cutoff_idx - это первая позиция в result где не менее 99% значения зависит от отдельных значений в data (т.е. менее 1% зависит от данных [0]). Данные вплоть до cutoff_idx исключаются из окончательных результатов, поскольку они слишком зависят от первого значения в data, поэтому возможно искажение среднего значения.

result = ewma_vectorized_safe(data, alpha, chunk_size)
sum_proportion = .99
cutoff_idx = window_size(alpha, sum_proportion)
result = result[cutoff_idx:]

Чтобы проиллюстрировать проблему, cutoff_idx выше, вы можете запустить ее несколько раз, обратите внимание на часто появляющийся фальстарт красной линии, который пропускается после cutoff_idx:

data_n = 100000
data = np.random.rand(data_n) * 100
window = 1000
sum_proportion = .99
alpha = 1 - np.exp(np.log(1-sum_proportion)/window)

result = ewma_vectorized_safe(data, alpha)

cutoff_idx = window_size(alpha, sum_proportion)
x = np.arange(start=0, stop=result.size)

import matplotlib.pyplot as plt
plt.plot(x[:cutoff_idx+1], result[:cutoff_idx+1], '-r',
         x[cutoff_idx:], result[cutoff_idx:], '-b')
plt.show()

обратите внимание, что cutoff_idx==window потому что альфа была установлена с помощью обратной функции window_size(), с той же самой sum_proportion. Это похоже на то, как pandas применяет ewm(span=window, min_periods=window).

Ответ 2

Я думаю, что я наконец взломал это!

Вот векторизованная версия функции numpy_ewma которая утверждает, что производит правильные результаты из @RaduS post -

def numpy_ewma_vectorized(data, window):

    alpha = 2 /(window + 1.0)
    alpha_rev = 1-alpha

    scale = 1/alpha_rev
    n = data.shape[0]

    r = np.arange(n)
    scale_arr = scale**r
    offset = data[0]*alpha_rev**(r+1)
    pw0 = alpha*alpha_rev**(n-1)

    mult = data*pw0*scale_arr
    cumsums = mult.cumsum()
    out = offset + cumsums*scale_arr[::-1]
    return out

Дальнейшее повышение

Мы можем повысить его еще раз с помощью некоторого повторного использования кода, например:

def numpy_ewma_vectorized_v2(data, window):

    alpha = 2 /(window + 1.0)
    alpha_rev = 1-alpha
    n = data.shape[0]

    pows = alpha_rev**(np.arange(n+1))

    scale_arr = 1/pows[:-1]
    offset = data[0]*pows[1:]
    pw0 = alpha*alpha_rev**(n-1)

    mult = data*pw0*scale_arr
    cumsums = mult.cumsum()
    out = offset + cumsums*scale_arr[::-1]
    return out

Испытание во время выполнения

Пусть время эти два против одной и той же функции циклы для большого набора данных.

In [97]: data = np.random.randint(2,9,(5000))
    ...: window = 20
    ...:

In [98]: np.allclose(numpy_ewma(data, window), numpy_ewma_vectorized(data, window))
Out[98]: True

In [99]: np.allclose(numpy_ewma(data, window), numpy_ewma_vectorized_v2(data, window))
Out[99]: True

In [100]: %timeit numpy_ewma(data, window)
100 loops, best of 3: 6.03 ms per loop

In [101]: %timeit numpy_ewma_vectorized(data, window)
1000 loops, best of 3: 665 µs per loop

In [102]: %timeit numpy_ewma_vectorized_v2(data, window)
1000 loops, best of 3: 357 µs per loop

In [103]: 6030/357.0
Out[103]: 16.89075630252101

Ускорение в 17 раз!

Ответ 3

Вот реализация, использующая NumPy, которая эквивалентна использованию df.ewm(alpha=alpha).mean(). После прочтения документации, это всего лишь несколько матричных операций. Хитрость заключается в построении правильных матриц.

Стоит отметить, что, поскольку мы создаем матрицы с плавающей точкой, вы можете быстро перебрать вашу память, если входной массив слишком велик.

import pandas as pd
import numpy as np

def ewma(x, alpha):
    '''
    Returns the exponentially weighted moving average of x.

    Parameters:
    -----------
    x : array-like
    alpha : float {0 <= alpha <= 1}

    Returns:
    --------
    ewma: numpy array
          the exponentially weighted moving average
    '''
    # Coerce x to an array
    x = np.array(x)
    n = x.size

    # Create an initial weight matrix of (1-alpha), and a matrix of powers
    # to raise the weights by
    w0 = np.ones(shape=(n,n)) * (1-alpha)
    p = np.vstack([np.arange(i,i-n,-1) for i in range(n)])

    # Create the weight matrix
    w = np.tril(w0**p,0)

    # Calculate the ewma
    return np.dot(w, x[::np.newaxis]) / w.sum(axis=1)

Давай проверим ее:

alpha = 0.55
x = np.random.randint(0,30,15)
df = pd.DataFrame(x, columns=['A'])
df.ewm(alpha=alpha).mean()

# returns:
#             A
# 0   13.000000
# 1   22.655172
# 2   20.443268
# 3   12.159796
# 4   14.871955
# 5   15.497575
# 6   20.743511
# 7   20.884818
# 8   24.250715
# 9   18.610901
# 10  17.174686
# 11  16.528564
# 12  17.337879
# 13   7.801912
# 14  12.310889

ewma(x=x, alpha=alpha)

# returns:
# array([ 13.        ,  22.65517241,  20.44326778,  12.1597964 ,
#        14.87195534,  15.4975749 ,  20.74351117,  20.88481763,
#        24.25071484,  18.61090129,  17.17468551,  16.52856393,
#        17.33787888,   7.80191235,  12.31088889])

Ответ 4

При заданных alpha и windowSize здесь используется подход для моделирования соответствующего поведения на NumPy -

def numpy_ewm_alpha(a, alpha, windowSize):
    wghts = (1-alpha)**np.arange(windowSize)
    wghts /= wghts.sum()
    out = np.full(df.shape[0],np.nan)
    out[windowSize-1:] = np.convolve(a,wghts,'valid')
    return out

Примеры прогона для проверки -

In [54]: alpha = 0.55
    ...: windowSize = 20
    ...: 

In [55]: df = pd.DataFrame(np.random.randint(2,9,(100)))

In [56]: out0 = df.ewm(alpha = alpha, min_periods=windowSize).mean().as_matrix().ravel()
    ...: out1 = numpy_ewm_alpha(df.values.ravel(), alpha = alpha, windowSize = windowSize)
    ...: print "Max. error : " + str(np.nanmax(np.abs(out0 - out1)))
    ...: 
Max. error : 5.10531254605e-07

In [57]: alpha = 0.75
    ...: windowSize = 30
    ...: 

In [58]: out0 = df.ewm(alpha = alpha, min_periods=windowSize).mean().as_matrix().ravel()
    ...: out1 = numpy_ewm_alpha(df.values.ravel(), alpha = alpha, windowSize = windowSize)
    ...: print "Max. error : " + str(np.nanmax(np.abs(out0 - out1)))

Max. error : 8.881784197e-16

Тест времени выполнения для большего набора данных -

In [61]: alpha = 0.55
    ...: windowSize = 20
    ...: 

In [62]: df = pd.DataFrame(np.random.randint(2,9,(10000)))

In [63]: %timeit df.ewm(alpha = alpha, min_periods=windowSize).mean()
1000 loops, best of 3: 851 µs per loop

In [64]: %timeit numpy_ewm_alpha(df.values.ravel(), alpha = alpha, windowSize = windowSize)
1000 loops, best of 3: 204 µs per loop

Дальнейшее повышение

Для дальнейшего повышения производительности мы могли бы избежать инициализации с помощью NaN и вместо этого использовать массив, полученный из np.convolve, например:

def numpy_ewm_alpha_v2(a, alpha, windowSize):
    wghts = (1-alpha)**np.arange(windowSize)
    wghts /= wghts.sum()
    out = np.convolve(a,wghts)
    out[:windowSize-1] = np.nan
    return out[:a.size]  

Сроки -

In [117]: alpha = 0.55
     ...: windowSize = 20
     ...: 

In [118]: df = pd.DataFrame(np.random.randint(2,9,(10000)))

In [119]: %timeit numpy_ewm_alpha(df.values.ravel(), alpha = alpha, windowSize = windowSize)
1000 loops, best of 3: 204 µs per loop

In [120]: %timeit numpy_ewm_alpha_v2(df.values.ravel(), alpha = alpha, windowSize = windowSize)
10000 loops, best of 3: 195 µs per loop

Ответ 5

Самый быстрый EWMA 23x pandas

Вопрос состоит в том, чтобы строго задать numpy решение, однако, похоже, что OP на самом деле просто numpy чисто numpy решение, чтобы ускорить время выполнения.

Я решил похожую проблему, но вместо этого посмотрел в сторону numba.jit который значительно ускоряет время вычислений.

In [24]: a = np.random.random(10**7)
    ...: df = pd.Series(a)
In [25]: %timeit numpy_ewma(a, 10)               # /a/42915307/4013571
    ...: %timeit df.ewm(span=10).mean()          # pandas
    ...: %timeit numpy_ewma_vectorized_v2(a, 10) # best w/o numba: /a/42926270/4013571
    ...: %timeit _ewma(a, 10)                    # fastest accurate (below)
    ...: %timeit _ewma_infinite_hist(a, 10)      # fastest overall (below)
4.14 s ± 116 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
991 ms ± 52.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 
396 ms ± 8.39 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
181 ms ± 1.01 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)   
39.6 ms ± 979 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Масштабирование до меньших массивов a = np.random.random(100) (результаты в том же порядке)

41.6 µs ± 491 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
945 ms ± 12 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
16 µs ± 93.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
1.66 µs ± 13.7 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.14 µs ± 5.57 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Также стоит отметить, что мои функции, приведенные ниже, одинаково выровнены с pandas (см. Примеры в docstr), в то время как некоторые ответы здесь принимают различные различные приближения. Например,

In [57]: print(pd.DataFrame([1,2,3]).ewm(span=2).mean().values.ravel())
    ...: print(numpy_ewma_vectorized_v2(np.array([1,2,3]), 2))
    ...: print(numpy_ewma(np.array([1,2,3]), 2))
[1.         1.75       2.61538462]
[1.         1.66666667 2.55555556]
[1.         1.18181818 1.51239669]

Исходный код, который я задокументировал для моей собственной библиотеки

import numpy as np
from numba import jit
from numba import float64
from numba import int64


@jit((float64[:], int64), nopython=True, nogil=True)
def _ewma(arr_in, window):
    r"""Exponentialy weighted moving average specified by a decay ''window''
    to provide better adjustments for small windows via:

        y[t] = (x[t] + (1-a)*x[t-1] + (1-a)^2*x[t-2] + ... + (1-a)^n*x[t-n]) /
               (1 + (1-a) + (1-a)^2 + ... + (1-a)^n).

    Parameters
    ----------
    arr_in : np.ndarray, float64
        A single dimenisional numpy array
    window : int64
        The decay window, or 'span'

    Returns
    -------
    np.ndarray
        The EWMA vector, same length / shape as ''arr_in''

    Examples
    --------
    >>> import pandas as pd
    >>> a = np.arange(5, dtype=float)
    >>> exp = pd.DataFrame(a).ewm(span=10, adjust=True).mean()
    >>> np.array_equal(_ewma_infinite_hist(a, 10), exp.values.ravel())
    True
    """
    n = arr_in.shape[0]
    ewma = np.empty(n, dtype=float64)
    alpha = 2 / float(window + 1)
    w = 1
    ewma_old = arr_in[0]
    ewma[0] = ewma_old
    for i in range(1, n):
        w += (1-alpha)**i
        ewma_old = ewma_old*(1-alpha) + arr_in[i]
        ewma[i] = ewma_old / w
    return ewma


@jit((float64[:], int64), nopython=True, nogil=True)
def _ewma_infinite_hist(arr_in, window):
    r"""Exponentialy weighted moving average specified by a decay ''window''
    assuming infinite history via the recursive form:

        (2) (i)  y[0] = x[0]; and
            (ii) y[t] = a*x[t] + (1-a)*y[t-1] for t>0.

    This method is less accurate that ''_ewma'' but
    much faster:

        In [1]: import numpy as np, bars
           ...: arr = np.random.random(100000)
           ...: %timeit bars._ewma(arr, 10)
           ...: %timeit bars._ewma_infinite_hist(arr, 10)
        3.74 ms ± 60.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
        262 µs ± 1.54 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

    Parameters
    ----------
    arr_in : np.ndarray, float64
        A single dimenisional numpy array
    window : int64
        The decay window, or 'span'

    Returns
    -------
    np.ndarray
        The EWMA vector, same length / shape as ''arr_in''

    Examples
    --------
    >>> import pandas as pd
    >>> a = np.arange(5, dtype=float)
    >>> exp = pd.DataFrame(a).ewm(span=10, adjust=False).mean()
    >>> np.array_equal(_ewma_infinite_hist(a, 10), exp.values.ravel())
    True
    """
    n = arr_in.shape[0]
    ewma = np.empty(n, dtype=float64)
    alpha = 2 / float(window + 1)
    ewma[0] = arr_in[0]
    for i in range(1, n):
        ewma[i] = arr_in[i] * alpha + ewma[i-1] * (1 - alpha)
    return ewma

Ответ 6

Вот еще одно решение, которое O придумала тем временем. Это примерно в четыре раза быстрее, чем решение панд.

def numpy_ewma(data, window):
    returnArray = np.empty((data.shape[0]))
    returnArray.fill(np.nan)
    e = data[0]
    alpha = 2 / float(window + 1)
    for s in range(data.shape[0]):
        e =  ((data[s]-e) *alpha ) + e
        returnArray[s] = e
    return returnArray

Я использовал эту формулу в качестве отправной точки. Я уверен, что это можно улучшить еще больше, но это, по крайней мере, отправная точка.

Ответ 7

@Ответ на Divakar, кажется, вызывает переполнение при работе с

numpy_ewma_vectorized(np.random.random(500000), 10)

Что я использовал:

def EMA(input, time_period=10): # For time period = 10
    t_ = time_period - 1
    ema = np.zeros_like(input,dtype=float)
    multiplier = 2.0 / (time_period + 1)
    #multiplier = 1 - multiplier
    for i in range(len(input)):
        # Special Case
        if i > t_:
            ema[i] = (input[i] - ema[i-1]) * multiplier + ema[i-1]
        else:
            ema[i] = np.mean(input[:i+1])
    return ema

Однако это медленнее, чем решение panda:

from pandas import ewma as pd_ema
def EMA_fast(X, time_period = 10):
    out = pd_ema(X, span=time_period, min_periods=time_period)
    out[:time_period-1] = np.cumsum(X[:time_period-1]) / np.asarray(range(1,time_period))
    return out

Ответ 8

Этот ответ может показаться неуместным. Но для тех, кому также необходимо рассчитать экспоненциально взвешенную дисперсию (а также стандартное отклонение) с помощью NumPy, будет полезно следующее решение:

import numpy as np

def ew(a, alpha, winSize):
    _alpha = 1 - alpha
    ws = _alpha ** np.arange(winSize)
    w_sum = ws.sum()
    ew_mean = np.convolve(a, ws)[winSize - 1] / w_sum
    bias = (w_sum ** 2) / ((w_sum ** 2) - (ws ** 2).sum())
    ew_var = (np.convolve((a - ew_mean) ** 2, ws)[winSize - 1] / w_sum) * bias
    ew_std = np.sqrt(ew_var)
    return (ew_mean, ew_var, ew_std)

Ответ 9

Основываясь на превосходном ответе Дивакара, вот реализация, которая соответствует adjust=True flag функции панды, т.е. Использованию весов, а не рекурсии.

def numpy_ewma(data, window):
    alpha = 2 /(window + 1.0)
    scale = 1/(1-alpha)
    n = data.shape[0]
    scale_arr = (1-alpha)**(-1*np.arange(n))
    weights = (1-alpha)**np.arange(n)
    pw0 = (1-alpha)**(n-1)
    mult = data*pw0*scale_arr
    cumsums = mult.cumsum()
    out = cumsums*scale_arr[::-1] / weights.cumsum()

    return out

Ответ 10

Благодаря решению @Divakar, и это очень быстро. Однако это вызывает проблему переполнения, о которой говорил @Danny. Функция не возвращает правильные ответы, когда длина больше 13835 или около того на моем конце.

Следующее - мое решение, основанное на решении Divakar и pandas.ewm(). Mean()

def numpy_ema(data, com=None, span=None, halflife=None, alpha=None):
"""Summary
Calculate ema with automatically-generated alpha. Weight of past effect
decreases as the length of window increasing.

# these functions reproduce the pandas result when the flag adjust=False is set.
References:
https://stackoverflow.com/questions/42869495/numpy-version-of-exponential-weighted-moving-average-equivalent-to-pandas-ewm

Args:
    data (TYPE): Description
    com (float, optional): Specify decay in terms of center of mass, alpha=1/(1+com), for com>=0
    span (float, optional): Specify decay in terms of span, alpha=2/(span+1), for span>=1
    halflife (float, optional): Specify decay in terms of half-life, alpha=1-exp(log(0.5)/halflife), for halflife>0
    alpha (float, optional): Specify smoothing factor alpha directly, 0<alpha<=1

Returns:
    TYPE: Description

Raises:
    ValueError: Description
"""
n_input = sum(map(bool, [com, span, halflife, alpha]))
if n_input != 1:
    raise ValueError(
        'com, span, halflife, and alpha are mutually exclusive')

nrow = data.shape[0]
if np.isnan(data).any() or (nrow > 13835) or (data.ndim == 2):
    df = pd.DataFrame(data)
    df_ewm = df.ewm(com=com, span=span, halflife=halflife,
                    alpha=alpha, adjust=False)
    out = df_ewm.mean().values.squeeze()
else:
    if com:
        alpha = 1 / (1 + com)
    elif span:
        alpha = 2 / (span + 1.0)
    elif halflife:
        alpha = 1 - np.exp(np.log(0.5) / halflife)

    alpha_rev = 1 - alpha
    pows = alpha_rev**(np.arange(nrow + 1))

    scale_arr = 1 / pows[:-1]
    offset = data[0] * pows[1:]
    pw0 = alpha * alpha_rev**(nrow - 1)

    mult = data * pw0 * scale_arr

    cumsums = np.cumsum(mult)
    out = offset + cumsums * scale_arr[::-1]
return out

Ответ 11

Здесь моя реализация для 1D входных массивов с бесконечным размером окна. Поскольку он использует большие числа, он работает только с входными массивами с элементами с абсолютным значением <1e16, когда используется float32, но это обычно должно иметь место.

Идея состоит в том, чтобы преобразовать входной массив в срезы ограниченной длины, чтобы не происходило переполнение, а затем выполнить вычисление ewm для каждого среза отдельно.

def ewm(x, alpha):
    """
    Returns the exponentially weighted mean y of a numpy array x with scaling factor alpha
    y[0] = x[0]
    y[j] = (1. - alpha) * y[j-1] + alpha * x[j],  for j > 0

    x -- 1D numpy array
    alpha -- float
    """

    n = int(-100. / np.log(1.-alpha)) # Makes sure that the first and last elements in f are very big and very small (about 1e22 and 1e-22)
    f = np.exp(np.arange(1-n, n, 2) * (0.5 * np.log(1. - alpha))) # Scaling factor for each slice
    tmp = (np.resize(x, ((len(x) + n - 1) // n, n)) / f * alpha).cumsum(axis=1) * f # Get ewm for each slice of length n

    # Add the last value of each previous slice to the next slice with corresponding scaling factor f and return result
    return np.resize(tmp + np.tensordot(np.append(x[0], np.roll(tmp.T[n-1], 1)[1:]), f * ((1. - alpha) / f[0]), axes=0), len(x))