Подтвердить что ты не робот

Где я могу найти исходный код функции Java Square Root?

Я знаю, что Math.sqrt вызывает StrictMath.sqrt(double a).

Подпись метода в классе StrictMath:

public static native double sqrt(double a);

Я хотел посмотреть на фактический код реализации, используемый для его расчета.

4b9b3361

Ответ 1

Когда вы устанавливаете JDK, исходный код стандартной библиотеки можно найти внутри src.zip. Это не поможет вам для StrictMath, хотя, поскольку StrictMath.sqrt(double) реализуется следующим образом:

public static native double sqrt(double a);

Так что это действительно просто родной вызов и может быть реализован по-разному на разных платформах Java.

Однако, поскольку в документации StrictMath указано:

Чтобы обеспечить переносимость Java-программ, определения некоторых числовых функций в этом пакете требуют, чтобы они дали те же результаты, что и некоторые опубликованные алгоритмы. Эти алгоритмы доступны из известной сетевой библиотеки netlib как пакет "Свободно распределяемая математическая библиотека", fdlibm. Эти алгоритмы, написанные на языке программирования C, следует понимать как выполненные со всеми операциями с плавающей запятой, которые следуют правилам арифметики с плавающей запятой Java.

Математическая библиотека Java определена в отношении версии fdlibm версии 5.3. Если fdlibm предоставляет более одного определения для функции (например, acos), используйте версию "Основная функция IEEE 754" (находящаяся в файле, имя которого начинается с буквы e). Методами, которые требуют семантики fdlibm, являются sin, cos, tan, asin, acos, atan, exp, log, log10, cbrt, atan2, pow, sinh, cosh, tanh, hypot, expm1 и log1p.

Итак, найдя подходящую версию источника fdlibm, вы также должны найти точную реализацию, используемую Java (и указанную здесь спецификацией).

Реализация, используемая fdlibm, - это

static const double one = 1.0, tiny=1.0e-300;

double z;
int sign = (int) 0x80000000; 
unsigned r, t1, s1, ix1, q1;
int ix0, s0, q, m, t, i;

ix0 = __HI(x); /* high word of x */
ix1 = __LO(x); /* low word of x */

/* take care of Inf and NaN */
if ((ix0 & 0x7ff00000) == 0x7ff00000) {            
    return x*x+x; /* sqrt(NaN) = NaN, 
                     sqrt(+inf) = +inf,
                     sqrt(-inf) = sNaN */
} 

/* take care of zero */
if (ix0 <= 0) {
    if (((ix0&(~sign)) | ix1) == 0) {
        return x; /* sqrt(+-0) = +-0 */
    } else if (ix0 < 0) {
        return (x-x) / (x-x); /* sqrt(-ve) = sNaN */
    }
}

/* normalize x */
m = (ix0 >> 20);
if (m == 0) { /* subnormal x */
    while (ix0==0) {
        m -= 21;
        ix0 |= (ix1 >> 11); ix1 <<= 21;
    }
    for (i=0; (ix0&0x00100000)==0; i++) {
        ix0 <<= 1;
    }
    m -= i-1;
    ix0 |= (ix1 >> (32-i));
    ix1 <<= i;
}

m -= 1023; /* unbias exponent */
ix0 = (ix0&0x000fffff)|0x00100000;
if (m&1) { /* odd m, double x to make it even */
    ix0 += ix0 + ((ix1&sign) >> 31);
    ix1 += ix1;
}

m >>= 1; /* m = [m/2] */

/* generate sqrt(x) bit by bit */
ix0 += ix0 + ((ix1 & sign)>>31);
ix1 += ix1;
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
r = 0x00200000; /* r = moving bit from right to left */

while (r != 0) {
    t = s0 + r; 
    if (t <= ix0) { 
        s0 = t+r; 
        ix0 -= t; 
        q += r; 
    } 
    ix0 += ix0 + ((ix1&sign)>>31);
    ix1 += ix1;
    r>>=1;
}

r = sign;
while (r != 0) {
    t1 = s1+r; 
    t = s0;
    if ((t<ix0) || ((t == ix0) && (t1 <= ix1))) { 
        s1 = t1+r;
        if (((t1&sign) == sign) && (s1 & sign) == 0) {
            s0 += 1;
        }
        ix0 -= t;
        if (ix1 < t1) {
            ix0 -= 1;
        }
        ix1 -= t1;
        q1  += r;
    }
    ix0 += ix0 + ((ix1&sign) >> 31);
    ix1 += ix1;
    r >>= 1;
}

/* use floating add to find out rounding direction */
if((ix0 | ix1) != 0) {
    z = one - tiny; /* trigger inexact flag */
    if (z >= one) {
        z = one+tiny;
        if (q1 == (unsigned) 0xffffffff) { 
            q1=0; 
            q += 1;
        }
    } else if (z > one) {
        if (q1 == (unsigned) 0xfffffffe) {
            q+=1;
        }
        q1+=2; 
    } else
        q1 += (q1&1);
    }
}

ix0 = (q>>1) + 0x3fe00000;
ix1 =  q 1>> 1;
if ((q&1) == 1) ix1 |= sign;
ix0 += (m <<20);
__HI(z) = ix0;
__LO(z) = ix1;
return z;

Ответ 2

Поскольку у меня, оказывается, OpenJDK, я покажу его реализацию здесь.

В jdk/src/share/native/java/lang/StrictMath.c:

JNIEXPORT jdouble JNICALL
Java_java_lang_StrictMath_sqrt(JNIEnv *env, jclass unused, jdouble d)
{
    return (jdouble) jsqrt((double)d);
}

jsqrt определяется как sqrt в jdk/src/share/native/java/lang/fdlibm/src/w_sqrt.c(имя изменяется через препроцессор):

#ifdef __STDC__
        double sqrt(double x)           /* wrapper sqrt */
#else
        double sqrt(x)                  /* wrapper sqrt */
        double x;
#endif
{
#ifdef _IEEE_LIBM
        return __ieee754_sqrt(x);
#else
        double z;
        z = __ieee754_sqrt(x);
        if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
        if(x<0.0) {
            return __kernel_standard(x,x,26); /* sqrt(negative) */
        } else
            return z;
#endif
}

И __ieee754_sqrt определяется в jdk/src/share/native/java/lang/fdlibm/src/e_sqrt.c как:

#ifdef __STDC__
static  const double    one     = 1.0, tiny=1.0e-300;
#else
static  double  one     = 1.0, tiny=1.0e-300;
#endif

#ifdef __STDC__
        double __ieee754_sqrt(double x)
#else
        double __ieee754_sqrt(x)
        double x;
#endif
{
        double z;
        int     sign = (int)0x80000000;
        unsigned r,t1,s1,ix1,q1;
        int ix0,s0,q,m,t,i;

        ix0 = __HI(x);                  /* high word of x */
        ix1 = __LO(x);          /* low word of x */

    /* take care of Inf and NaN */
        if((ix0&0x7ff00000)==0x7ff00000) {
            return x*x+x;               /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
                                           sqrt(-inf)=sNaN */
        }
    /* take care of zero */
        if(ix0<=0) {
            if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
            else if(ix0<0)
                return (x-x)/(x-x);             /* sqrt(-ve) = sNaN */
        }
    /* normalize x */
        m = (ix0>>20);
        if(m==0) {                              /* subnormal x */
            while(ix0==0) {
                m -= 21;
                ix0 |= (ix1>>11); ix1 <<= 21;
            }
            for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
            m -= i-1;
            ix0 |= (ix1>>(32-i));
            ix1 <<= i;
        }
        m -= 1023;      /* unbias exponent */
        ix0 = (ix0&0x000fffff)|0x00100000;
        if(m&1){        /* odd m, double x to make it even */
            ix0 += ix0 + ((ix1&sign)>>31);
            ix1 += ix1;
        }
        m >>= 1;        /* m = [m/2] */

    /* generate sqrt(x) bit by bit */
        ix0 += ix0 + ((ix1&sign)>>31);
        ix1 += ix1;
        q = q1 = s0 = s1 = 0;   /* [q,q1] = sqrt(x) */
        r = 0x00200000;         /* r = moving bit from right to left */

        while(r!=0) {
            t = s0+r;
            if(t<=ix0) {
                s0   = t+r;
                ix0 -= t;
                q   += r;
            }
            ix0 += ix0 + ((ix1&sign)>>31);
            ix1 += ix1;
            r>>=1;
        }

        r = sign;
        while(r!=0) {
            t1 = s1+r;
            t  = s0;
            if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
                s1  = t1+r;
                if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
                ix0 -= t;
                if (ix1 < t1) ix0 -= 1;
                ix1 -= t1;
                q1  += r;
            }
            ix0 += ix0 + ((ix1&sign)>>31);
            ix1 += ix1;
            r>>=1;
        }

    /* use floating add to find out rounding direction */
        if((ix0|ix1)!=0) {
            z = one-tiny; /* trigger inexact flag */
            if (z>=one) {
                z = one+tiny;
                if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
                else if (z>one) {
                    if (q1==(unsigned)0xfffffffe) q+=1;
                    q1+=2;
                } else
                    q1 += (q1&1);
            }
        }
        ix0 = (q>>1)+0x3fe00000;
        ix1 =  q1>>1;
        if ((q&1)==1) ix1 |= sign;
        ix0 += (m <<20);
        __HI(z) = ix0;
        __LO(z) = ix1;
        return z;
}

В файле содержатся подробные комментарии, объясняющие используемые методы, которые я опустил для (полу) краткости. Здесь файл в Mercurial (я надеюсь, что это правильный способ связи с ним).

Ответ 3

Загрузите исходный код из OpenJDK.

Ответ 4

Я точно не знаю, но думаю, что вы найдете алгоритм Ньютона в конечной точке.

UPD: как говорится, конкретная реализация зависит от конкретной java-машины. Для окон это, вероятно, использование ассемблерной реализации, где стандартный оператор sqrt существует